{"title":"State Space Modeling and Stability Analysis of a VSC-HVDC System for Exchange of Energy","authors":"A. Rekik, G. Boukettaya","doi":"10.18280/ejee.220603","DOIUrl":null,"url":null,"abstract":"Nowadays, relevant actors are searching for solutions to produce energy with a low impact on the environment. Indeed, transmitting power via large distances with maintaining low losses is one of the main challenges. To improve electricity communication between countries and offshore wind, a new interconnections line must be built. Therefore, Voltage Source Converter High Voltage Direct Current (VSC-HVDC) transmission is incoming as the exceptive technology in order to address the challenges related to the integration of future offshore wind power plants. In spite of its many advantages, VSC-based HVDC transmission systems can experience unexpected instability and interaction phenomena: Small disturbances that occur continually in VSC-HVDC transmission systems due to the complex VSC based interconnections and an important number of components with non-linear nature that may cause failure. Thus, before installing the HVDC system, there is a significant need for studying a hybrid AC-DC system to guarantee the reliable and stable operation. This paper deals with the stability of a VSC-HVDC system by the use of a small signal stability method; such procedure enables to study the stability of a linearized VSC-HVDC system through state-space modeling and eigenvalue-based stability analysis.","PeriodicalId":340029,"journal":{"name":"European Journal of Electrical Engineering","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18280/ejee.220603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Nowadays, relevant actors are searching for solutions to produce energy with a low impact on the environment. Indeed, transmitting power via large distances with maintaining low losses is one of the main challenges. To improve electricity communication between countries and offshore wind, a new interconnections line must be built. Therefore, Voltage Source Converter High Voltage Direct Current (VSC-HVDC) transmission is incoming as the exceptive technology in order to address the challenges related to the integration of future offshore wind power plants. In spite of its many advantages, VSC-based HVDC transmission systems can experience unexpected instability and interaction phenomena: Small disturbances that occur continually in VSC-HVDC transmission systems due to the complex VSC based interconnections and an important number of components with non-linear nature that may cause failure. Thus, before installing the HVDC system, there is a significant need for studying a hybrid AC-DC system to guarantee the reliable and stable operation. This paper deals with the stability of a VSC-HVDC system by the use of a small signal stability method; such procedure enables to study the stability of a linearized VSC-HVDC system through state-space modeling and eigenvalue-based stability analysis.