Topic model-based link community detection with adjustable range of overlapping

Le Yu, Bin Wu, Bai Wang
{"title":"Topic model-based link community detection with adjustable range of overlapping","authors":"Le Yu, Bin Wu, Bai Wang","doi":"10.1145/2492517.2492581","DOIUrl":null,"url":null,"abstract":"Complex networks have attracted much research attentions. Community detection is an important problem in complex network which is useful in a variety of applications such as information propagation, link prediction, recommendations and marketing. In this paper, we focus on discovering overlapping community structure using link partition. We proposed a LDA-based link partition (LBLP) method which can find communities with adjustable range of overlapping. This method employs topic model to detect link partition, which can calculate the community belonging factor for each link. Based on the belonging factor, link partitions with bridge links can be found efficiently. We validate the effectiveness of our solution on both real-world and synthesized networks. The experiment results demonstrate that the approach can find meaningful and relevant link community structure.","PeriodicalId":442230,"journal":{"name":"2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2013)","volume":"8 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2013)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2492517.2492581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Complex networks have attracted much research attentions. Community detection is an important problem in complex network which is useful in a variety of applications such as information propagation, link prediction, recommendations and marketing. In this paper, we focus on discovering overlapping community structure using link partition. We proposed a LDA-based link partition (LBLP) method which can find communities with adjustable range of overlapping. This method employs topic model to detect link partition, which can calculate the community belonging factor for each link. Based on the belonging factor, link partitions with bridge links can be found efficiently. We validate the effectiveness of our solution on both real-world and synthesized networks. The experiment results demonstrate that the approach can find meaningful and relevant link community structure.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于主题模型的可调重叠范围链接社团检测
复杂网络已经引起了人们的广泛关注。社区检测是复杂网络中的一个重要问题,在信息传播、链接预测、推荐和营销等多种应用中都有重要作用。在本文中,我们着重于利用链接划分来发现重叠的社区结构。提出了一种基于lda的链路划分(LBLP)方法,该方法可以发现重叠范围可调的社区。该方法采用主题模型检测链路划分,可以计算出每个链路的社区归属因子。基于归属因子,可以有效地找到具有桥式链路的链路分区。我们在现实世界和合成网络上验证了我们的解决方案的有效性。实验结果表明,该方法可以找到有意义且相关的链路社区结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Statistical analysis and implications of SNS search in under-developed countries Identifying unreliable sources of skill and competency information Assessing group cohesion in homophily networks Exploiting online social data in ontology learning for event tracking and emergency response Event identification for social streams using keyword-based evolving graph sequences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1