L. Comella, F. Goldschmidtboeing, Johannes Klueppel, Eiko Hager, P. Woias
{"title":"An innovative sensor for the simultaneous measurement of Photosynthetic Active Radiation (PAR) and Leaf Area Index (LAI)","authors":"L. Comella, F. Goldschmidtboeing, Johannes Klueppel, Eiko Hager, P. Woias","doi":"10.1109/SENSORS52175.2022.9967119","DOIUrl":null,"url":null,"abstract":"Climate change threatens our forest ecosystems. As they provide several social and economic benefits and can mitigate climate change itself, strategies to keep them healthy must be developed. Therefore, in this work, an innovative sensing method is proposed to monitor tree development continuously through two key parameters to model forest growth: Leaf Area Index (LAI) and Photosynthetic Active Radiation (PAR). Outbreaking is the possibility that the newly developed sensor system gives to measure both parameters simultaneously with the same sensor component: the spectral microsensor AS7341. The microsensor, integrated on a compact sensor node, permits automatic measurements over extensive areas, without the need of an operator. It is exclusively powered with solar cells, making it suitable for long-time deployment and over-seasonal measurements. It can be distributed over extensive areas and at different levels of the tree crown. The developed technology permits the continuous acquisition of data opening new possibilities in modeling and monitoring the effect of heat waves and droughts on vegetation in an unprecedented manner.","PeriodicalId":120357,"journal":{"name":"2022 IEEE Sensors","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SENSORS52175.2022.9967119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Climate change threatens our forest ecosystems. As they provide several social and economic benefits and can mitigate climate change itself, strategies to keep them healthy must be developed. Therefore, in this work, an innovative sensing method is proposed to monitor tree development continuously through two key parameters to model forest growth: Leaf Area Index (LAI) and Photosynthetic Active Radiation (PAR). Outbreaking is the possibility that the newly developed sensor system gives to measure both parameters simultaneously with the same sensor component: the spectral microsensor AS7341. The microsensor, integrated on a compact sensor node, permits automatic measurements over extensive areas, without the need of an operator. It is exclusively powered with solar cells, making it suitable for long-time deployment and over-seasonal measurements. It can be distributed over extensive areas and at different levels of the tree crown. The developed technology permits the continuous acquisition of data opening new possibilities in modeling and monitoring the effect of heat waves and droughts on vegetation in an unprecedented manner.