Estimation of atmospheric turbulence intensity based on deep learning

Shengjie Ma, Shiqi Hao, Qingsong Zhao, Chenlu Xu
{"title":"Estimation of atmospheric turbulence intensity based on deep learning","authors":"Shengjie Ma, Shiqi Hao, Qingsong Zhao, Chenlu Xu","doi":"10.1117/12.2603106","DOIUrl":null,"url":null,"abstract":"The free space optical communication system will inevitably be affected by atmospheric turbulence when working, which will increase the bit error rate at the receiving end, and seriously affects the communication quality, so it is necessary to analyze the characteristics of atmospheric turbulence. In the paper, the powerful feature extraction and data processing capabilities of the convolutional neural network is used to estimate the atmospheric turbulence refractive index structure constant C2n , and the influence of transmission distance, beam multiplexing technology and beam mode is analyzed on the estimation effect. The results show that this method can effectively estimate C2n , and the error can be controlled within a reasonable range.","PeriodicalId":330466,"journal":{"name":"Sixteenth National Conference on Laser Technology and Optoelectronics","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixteenth National Conference on Laser Technology and Optoelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2603106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The free space optical communication system will inevitably be affected by atmospheric turbulence when working, which will increase the bit error rate at the receiving end, and seriously affects the communication quality, so it is necessary to analyze the characteristics of atmospheric turbulence. In the paper, the powerful feature extraction and data processing capabilities of the convolutional neural network is used to estimate the atmospheric turbulence refractive index structure constant C2n , and the influence of transmission distance, beam multiplexing technology and beam mode is analyzed on the estimation effect. The results show that this method can effectively estimate C2n , and the error can be controlled within a reasonable range.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习的大气湍流强度估计
自由空间光通信系统在工作时不可避免地会受到大气湍流的影响,这会增加接收端的误码率,严重影响通信质量,因此有必要对大气湍流的特性进行分析。本文利用卷积神经网络强大的特征提取和数据处理能力对大气湍流折射率结构常数C2n进行估计,分析了传输距离、波束复用技术和波束模式对估计效果的影响。结果表明,该方法能有效地估计C2n,且误差能控制在合理范围内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optical digital-to-analog conversion based on weighted fiber coupler Influence of atmospheric turbulence on tracking performance of LIDAR and validation of vacuum experiment Novel four-step phase shifting algorithm based on the products of sines and cosines Femtosecond-laser-inscribed Fiber Bragg grating array for quasi-distributed high-temperature sensing Giant and tunable Goos-Hänchen shifts with a surface plasmon resonance structure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1