Tensor-based framework for the prediction of frequency-selective time-variant MIMO channels

M. Milojević, G. D. Galdo, M. Haardt
{"title":"Tensor-based framework for the prediction of frequency-selective time-variant MIMO channels","authors":"M. Milojević, G. D. Galdo, M. Haardt","doi":"10.1109/WSA.2008.4475550","DOIUrl":null,"url":null,"abstract":"In this contribution we propose a tensor-based framework for the prediction of time-variant frequency-selective multiple-input multiple-output (MIMO) channels from noisy channel estimates. This method performs the prediction in a transformed domain obtained via the higher order singular value decomposition (HOSVD), namely on the transformed tensor elements. This is followed by the inverse transformation of the predicted transformed tensor elements onto a basis corresponding to the signal subspace. To verify our strategy, we compare the results in terms of the normalized mean square error using a known prediction method, e.g., a Wiener filter, applied to the transformed tensor elements with the identical method applied directly to the channel coefficients. The results of our investigation show that the tensor-based prediction method outperforms the direct prediction method. Although we concentrate in this contribution on the prediction in the time domain, this framework can also be used for the estimation in other domains.","PeriodicalId":255495,"journal":{"name":"2008 International ITG Workshop on Smart Antennas","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International ITG Workshop on Smart Antennas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSA.2008.4475550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

In this contribution we propose a tensor-based framework for the prediction of time-variant frequency-selective multiple-input multiple-output (MIMO) channels from noisy channel estimates. This method performs the prediction in a transformed domain obtained via the higher order singular value decomposition (HOSVD), namely on the transformed tensor elements. This is followed by the inverse transformation of the predicted transformed tensor elements onto a basis corresponding to the signal subspace. To verify our strategy, we compare the results in terms of the normalized mean square error using a known prediction method, e.g., a Wiener filter, applied to the transformed tensor elements with the identical method applied directly to the channel coefficients. The results of our investigation show that the tensor-based prediction method outperforms the direct prediction method. Although we concentrate in this contribution on the prediction in the time domain, this framework can also be used for the estimation in other domains.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于张量的频率选择时变MIMO信道预测框架
在这篇贡献中,我们提出了一个基于张量的框架,用于从噪声信道估计中预测时变频率选择多输入多输出(MIMO)信道。该方法在通过高阶奇异值分解(HOSVD)得到的变换域中,即变换后的张量元素上进行预测。接下来是预测的变换张量元素到对应于信号子空间的基上的逆变换。为了验证我们的策略,我们使用一种已知的预测方法,例如,将应用于变换张量元素的维纳滤波器与直接应用于通道系数的相同方法,在标准化均方误差方面比较结果。研究结果表明,基于张量的预测方法优于直接预测方法。虽然我们的贡献主要集中在时域的预测上,但这个框架也可以用于其他域的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Block diagonalization for multiuser MIMO TDD downlink and uplink in time-varying channel Smart antenna design for beamforming of UWB signals in Gaussian noise System-level performance evaluation of winner system Least-Squares based channel estimation for MIMO relays Per-antenna power constrained rate optimization for multiuser MIMO systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1