Mining positive and negative fuzzy association rules with multiple minimum supports

Weimin Ouyang
{"title":"Mining positive and negative fuzzy association rules with multiple minimum supports","authors":"Weimin Ouyang","doi":"10.1109/ICSAI.2012.6223498","DOIUrl":null,"url":null,"abstract":"Association rules mining is an important research topic in data mining and knowledge discovery. Traditional algorithms for mining association rules are built on the binary attributes databases, which has three limitations. Firstly, it can not concern quantitative attributes; secondly, only the positive association rules are discovered; thirdly, it treat each item with the same frequency although different item may have different frequency. In this paper, we put forward a discovery algorithm for mining positive and negative fuzzy association rules to resolve these three limitations.","PeriodicalId":164945,"journal":{"name":"2012 International Conference on Systems and Informatics (ICSAI2012)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Systems and Informatics (ICSAI2012)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSAI.2012.6223498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Association rules mining is an important research topic in data mining and knowledge discovery. Traditional algorithms for mining association rules are built on the binary attributes databases, which has three limitations. Firstly, it can not concern quantitative attributes; secondly, only the positive association rules are discovered; thirdly, it treat each item with the same frequency although different item may have different frequency. In this paper, we put forward a discovery algorithm for mining positive and negative fuzzy association rules to resolve these three limitations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
挖掘具有多个最小支持度的正、负模糊关联规则
关联规则挖掘是数据挖掘和知识发现领域的一个重要研究课题。传统的关联规则挖掘算法是建立在二元属性数据库上的,这种算法有三个局限性。首先,它不能关注定量属性;其次,只发现正向关联规则;第三,它以相同的频率对待每个项目,尽管不同的项目可能有不同的频率。本文提出了一种挖掘正、负模糊关联规则的发现算法来解决这三个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
About feedback vaccination rules for a true-mass action-type SEIR epidemic model Enhanced accuracy of position based on Multi-mode location system Formal verification of signature monitoring mechanisms using model checking How to cope with the evolution of classic software during the test generation based on CPN Soil moisture quantitative study of the Nanhui tidal flat in the Yangtze River Estuary by using ENVISAT ASAR data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1