{"title":"A neural network-based technique for structural identification of SISO systems","authors":"A. Leva, L. Piroddi","doi":"10.1109/IMTC.1994.352105","DOIUrl":null,"url":null,"abstract":"This paper presents a simple technique for the structural identification of single-input, single-output (SISO) dynamic systems, based on the use of a neural network. The network is trained to recognize some significant features of the process dynamics starting from a simplified representation of its unit step response, which in turn is obtained by a convenient I/O experiment. In addition, the network classifies the process with respect to a convenient set of possible model structures, which represent the most common situations arising when a process model needs to be identified for control purposes.<<ETX>>","PeriodicalId":231484,"journal":{"name":"Conference Proceedings. 10th Anniversary. IMTC/94. Advanced Technologies in I & M. 1994 IEEE Instrumentation and Measurement Technolgy Conference (Cat. No.94CH3424-9)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Proceedings. 10th Anniversary. IMTC/94. Advanced Technologies in I & M. 1994 IEEE Instrumentation and Measurement Technolgy Conference (Cat. No.94CH3424-9)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMTC.1994.352105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper presents a simple technique for the structural identification of single-input, single-output (SISO) dynamic systems, based on the use of a neural network. The network is trained to recognize some significant features of the process dynamics starting from a simplified representation of its unit step response, which in turn is obtained by a convenient I/O experiment. In addition, the network classifies the process with respect to a convenient set of possible model structures, which represent the most common situations arising when a process model needs to be identified for control purposes.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于神经网络的SISO系统结构识别技术
本文提出了一种基于神经网络的单输入单输出(SISO)动态系统结构辨识的简单方法。该网络被训练来识别过程动力学的一些重要特征,从其单位阶跃响应的简化表示开始,进而通过方便的I/O实验获得。此外,该网络根据一组方便的可能的模型结构对过程进行分类,这些模型结构代表了为了控制目的需要识别过程模型时出现的最常见情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Definition and analysis of an electronic device for synchronous circular sampling of locally periodic signals An optical instrumentation using dual sensor-dummy against noises Curvisensors for inside and outside robot arms A quartz crystal microbalance-type odor sensor using PVC-blended lipid membrane Locally mounted process gas analyzing system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1