Cloud GIS Model for Geospatial Bigdata Visualization towards Smart City: A case study of Bhubaneswar, Odisha

Rabindra Kumar Barik, S. Tripathy, Aishwarya Nayak, D. S. Roy
{"title":"Cloud GIS Model for Geospatial Bigdata Visualization towards Smart City: A case study of Bhubaneswar, Odisha","authors":"Rabindra Kumar Barik, S. Tripathy, Aishwarya Nayak, D. S. Roy","doi":"10.1109/OCIT56763.2022.00093","DOIUrl":null,"url":null,"abstract":"The introduction of cloud computing technologies as well as the growth of geospatial big data have both helped to make smart city initiatives more realistically achievable. Using geospatial Big data, cities have the potential to derive useful insights from the vast amounts of geospatial data that have been collected from a variety of sources. In the quest to realise the potential of smart cities in the future, one emerging area of research is the combination of geospatial-focused big data and cloud computing. This combination has posed a number of exciting new challenges. This article proposed and constructed a Geospatial Big Data Infrastructure model based on cloud computing called GeoTCloud for geospatial big data visualisation in the tourism industry. For smart city development, the proposed model aids in the storage, analysis, and presentation of geospatial big data in the tourism sector. Quantum GIS;Open Source GIS is utilised for geospatial database development, while Quantum GIS’ QGIS Plugin is used for geospatial cloud computing infrastructure. GeoTCloud's various geographic overlay analysis is also discussed.","PeriodicalId":425541,"journal":{"name":"2022 OITS International Conference on Information Technology (OCIT)","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 OITS International Conference on Information Technology (OCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCIT56763.2022.00093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The introduction of cloud computing technologies as well as the growth of geospatial big data have both helped to make smart city initiatives more realistically achievable. Using geospatial Big data, cities have the potential to derive useful insights from the vast amounts of geospatial data that have been collected from a variety of sources. In the quest to realise the potential of smart cities in the future, one emerging area of research is the combination of geospatial-focused big data and cloud computing. This combination has posed a number of exciting new challenges. This article proposed and constructed a Geospatial Big Data Infrastructure model based on cloud computing called GeoTCloud for geospatial big data visualisation in the tourism industry. For smart city development, the proposed model aids in the storage, analysis, and presentation of geospatial big data in the tourism sector. Quantum GIS;Open Source GIS is utilised for geospatial database development, while Quantum GIS’ QGIS Plugin is used for geospatial cloud computing infrastructure. GeoTCloud's various geographic overlay analysis is also discussed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向智慧城市的地理空间大数据可视化云GIS模型——以奥里萨邦布巴内斯瓦尔为例
云计算技术的引入以及地理空间大数据的增长都有助于使智慧城市倡议更现实地实现。利用地理空间大数据,城市有可能从从各种来源收集的大量地理空间数据中获得有用的见解。为了实现未来智慧城市的潜力,一个新兴的研究领域是将以地理空间为重点的大数据与云计算相结合。这种组合带来了许多令人兴奋的新挑战。本文针对旅游行业地理空间大数据可视化,提出并构建了基于云计算的地理空间大数据基础设施模型GeoTCloud。对于智慧城市的发展,所提出的模型有助于旅游业地理空间大数据的存储、分析和呈现。量子GIS:利用开源GIS开发地理空间数据库,利用量子GIS的QGIS插件开发地理空间云计算基础设施。讨论了GeoTCloud的各种地理叠加分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visualization of 3D Point Clouds for Vehicle Detection Based on LiDAR and Camera Fusion Distributed Self Intermittent Fault outlier identification technique for WSN s Vision-Based Detection of Hospital and Police Station Scene Natural Question Generation using Transformers and Reinforcement Learning Edge Intelligence Based Mitigation of False Data Injection Attack In IoMT Framework
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1