Resource-Efficient Salient Foreground Detection for Embedded Smart Cameras br Tracking Feedback

Mauricio Casares, Senem Velipasalar
{"title":"Resource-Efficient Salient Foreground Detection for Embedded Smart Cameras br Tracking Feedback","authors":"Mauricio Casares, Senem Velipasalar","doi":"10.1109/AVSS.2010.50","DOIUrl":null,"url":null,"abstract":"Battery-powered wireless embedded smart cameras havelimited processing power, memory and energy. Since videoprocessing tasks consume significant amount of power,the problem of limited resources becomes even more pro-nounced, and necessitates designing light-weight algo-rithms suitable for embedded platforms. In this paper, wepresent a resource-efficient salient foreground detection andtracking algorithm. Contrary to traditional methods thatimplement foreground object detection and tracking inde-pendently and in a sequential manner, the proposed methoduses the feedback from the tracking stage in the foregroundobject detection. We compare the proposed method with asequential method on the microprocessor of an embeddedsmart camera, and present the savings in the processingtime and energy consumption and the gain in the lifetimeof a battery-powered camera for different scenarios. Thepresented method provides significant savings in terms ofthe processing time of a frame. We take advantage of thesesavings by sending the microprocessor to idle state at theend of processing a frame, and when the scene is empty.","PeriodicalId":415758,"journal":{"name":"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance","volume":"26 30","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2010.50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Battery-powered wireless embedded smart cameras havelimited processing power, memory and energy. Since videoprocessing tasks consume significant amount of power,the problem of limited resources becomes even more pro-nounced, and necessitates designing light-weight algo-rithms suitable for embedded platforms. In this paper, wepresent a resource-efficient salient foreground detection andtracking algorithm. Contrary to traditional methods thatimplement foreground object detection and tracking inde-pendently and in a sequential manner, the proposed methoduses the feedback from the tracking stage in the foregroundobject detection. We compare the proposed method with asequential method on the microprocessor of an embeddedsmart camera, and present the savings in the processingtime and energy consumption and the gain in the lifetimeof a battery-powered camera for different scenarios. Thepresented method provides significant savings in terms ofthe processing time of a frame. We take advantage of thesesavings by sending the microprocessor to idle state at theend of processing a frame, and when the scene is empty.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于跟踪反馈的嵌入式智能相机显著前景检测
电池供电的无线嵌入式智能相机的处理能力、内存和能量有限。由于视频处理任务消耗大量的功率,资源有限的问题变得更加明显,并且需要设计适合嵌入式平台的轻量级算法。本文提出了一种资源高效的显著前景检测与跟踪算法。传统的前景目标检测和跟踪方法是独立地、顺序地实现的,而本文提出的方法将跟踪阶段的反馈信息应用到前景目标检测中。我们将该方法与嵌入式智能相机微处理器上的顺序方法进行了比较,并给出了不同场景下电池供电相机处理时间和能耗的节省以及寿命的增加。所提出的方法在帧的处理时间方面提供了显著的节省。我们利用这些节省,在处理帧结束时,当场景为空时,将微处理器发送到空闲状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Statistical Background Modeling: An Edge Segment Based Moving Object Detection Approach Who, what, when, where, why and how in video analysis: an application centric view Trajectory Based Activity Discovery Local Abnormality Detection in Video Using Subspace Learning Functionality Delegation in Distributed Surveillance Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1