Segmentation of Integrated Circuit Layouts from Scan Electron Microscopy Images

B. Trindade, E. Ukwatta, Mike Spence, C. Pawlowicz
{"title":"Segmentation of Integrated Circuit Layouts from Scan Electron Microscopy Images","authors":"B. Trindade, E. Ukwatta, Mike Spence, C. Pawlowicz","doi":"10.1109/CCECE.2018.8447878","DOIUrl":null,"url":null,"abstract":"One of the most important steps in the extraction of layout for reverse engineering of the integrated circuits (ICs) is the image segmentation of wires and vias from scan electron microscope (SEM) images. This segmentation is challenging due to the gigabytes of image data just for a single IC, image noise, and artefacts. Existing approaches rely on image intensity threshold-based methods but requires significant amount of manual user interactions to correct errors in segmentation. In this paper, we describe an image processing pipeline for segmenting IC layouts from SEM images. Our pipeline includes image normalization, image preprocessing, and segmentation. The segmentation results were compared using a custom-built comparison tool. The results showed, with the correct filters/methods selection, an increase in accuracy of the segmentation for all tested image sets.","PeriodicalId":181463,"journal":{"name":"2018 IEEE Canadian Conference on Electrical & Computer Engineering (CCECE)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Canadian Conference on Electrical & Computer Engineering (CCECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCECE.2018.8447878","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

One of the most important steps in the extraction of layout for reverse engineering of the integrated circuits (ICs) is the image segmentation of wires and vias from scan electron microscope (SEM) images. This segmentation is challenging due to the gigabytes of image data just for a single IC, image noise, and artefacts. Existing approaches rely on image intensity threshold-based methods but requires significant amount of manual user interactions to correct errors in segmentation. In this paper, we describe an image processing pipeline for segmenting IC layouts from SEM images. Our pipeline includes image normalization, image preprocessing, and segmentation. The segmentation results were compared using a custom-built comparison tool. The results showed, with the correct filters/methods selection, an increase in accuracy of the segmentation for all tested image sets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
扫描电镜图像中集成电路版图的分割
从扫描电子显微镜(SEM)图像中对导线和过孔进行图像分割是集成电路逆向工程中版图提取的重要步骤之一。这种分割是具有挑战性的,因为仅一个IC就有千兆字节的图像数据、图像噪声和伪影。现有的方法依赖于基于图像强度阈值的方法,但需要大量的手动用户交互来纠正分割中的错误。在本文中,我们描述了一个从SEM图像分割IC布局的图像处理流水线。我们的流水线包括图像归一化、图像预处理和分割。使用定制的比较工具对分割结果进行比较。结果表明,通过选择正确的滤波器/方法,所有测试图像集的分割精度都有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Full Area Coverage Guaranteed, Energy Efficient Network Configuration Strategy for 3D Wireless Sensor Networks Metasurface-Based WPT Rectenna with Extensive Input Power Range in the 900 MHz Wearable Ultrasonic Sensor Using Double-Layer PVDF Films for Monitoring Tissue Motion A Stochastic Programming Model for Resource Allocation in LTE-U Networks Current Spectral Analysis of Broken Rotor Bar Faults for Induction Motors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1