Remote State Estimation for Jump Markov Nonlinear Systems: A Stochastic Event-Triggered Approach

Weihao Song, Jianan Wang, Dandan Wang, Chunyan Wang, Jiayuan Shan
{"title":"Remote State Estimation for Jump Markov Nonlinear Systems: A Stochastic Event-Triggered Approach","authors":"Weihao Song, Jianan Wang, Dandan Wang, Chunyan Wang, Jiayuan Shan","doi":"10.1109/CoDIT49905.2020.9263908","DOIUrl":null,"url":null,"abstract":"This paper investigates the remote state estimation issue for the jump Markov nonlinear systems (JMNLSs) with the stochastic event-triggered transmission strategy. For the purpose of saving the scarce network resources, the stochastic event-triggered communication is employed to cut down the number of measurement transmission. The interacting multiple model (IMM) scheme is incorporated due to its strength in alleviating computational burden encountered in the multiple model state estimation problem. In addition, the estimated measurement is utilized to update the mode probability in IMM-based filter when the current measurement is not available to the remote estimators. The proposed algorithm is applied in a two-dimensional maneuvering target tracking problem and the simulation results are presented, which validates the usefulness of the developed scheme.","PeriodicalId":355781,"journal":{"name":"2020 7th International Conference on Control, Decision and Information Technologies (CoDIT)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 7th International Conference on Control, Decision and Information Technologies (CoDIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CoDIT49905.2020.9263908","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the remote state estimation issue for the jump Markov nonlinear systems (JMNLSs) with the stochastic event-triggered transmission strategy. For the purpose of saving the scarce network resources, the stochastic event-triggered communication is employed to cut down the number of measurement transmission. The interacting multiple model (IMM) scheme is incorporated due to its strength in alleviating computational burden encountered in the multiple model state estimation problem. In addition, the estimated measurement is utilized to update the mode probability in IMM-based filter when the current measurement is not available to the remote estimators. The proposed algorithm is applied in a two-dimensional maneuvering target tracking problem and the simulation results are presented, which validates the usefulness of the developed scheme.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
跳跃马尔可夫非线性系统的远程状态估计:一种随机事件触发方法
研究了具有随机事件触发传输策略的跳变马尔可夫非线性系统的远程状态估计问题。为了节省稀缺的网络资源,采用随机事件触发通信减少测量传输次数。引入交互多模型(IMM)方案,以减轻多模型状态估计问题的计算量。此外,当远程估计器无法获得当前测量值时,利用估计的测量值来更新基于im的滤波器的模式概率。将该算法应用于一个二维机动目标跟踪问题,并给出了仿真结果,验证了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Trajectory tracking controller for nonlinear systems with disturbances using iterative learning algorithm without resetting condition Influence of a water flow variation on the efficiency of a hybrid PV/T water panel Demand-Oriented Rescheduling of Railway Traffic in Case of Delays Synergetic Synthesis of Adaptive Control of an Electro-pneumatic System Tourist Behaviour Analysis Based on Digital Pattern of Life
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1