Image visualization based malware detection

K. Kancherla, Srinivas Mukkamala
{"title":"Image visualization based malware detection","authors":"K. Kancherla, Srinivas Mukkamala","doi":"10.1109/CICYBS.2013.6597204","DOIUrl":null,"url":null,"abstract":"Malware detection is one of the challenging tasks in Cyber security. The advent of code obfuscation, metamorphic malware, packers and zero day attacks has made malware detection a challenging task. In this paper we present a visualization based approach for malware detection. First the executable is converted to a gray-scale image called byteplot. Later we extract low level features like intensity based and texture based features. We apply computationally intelligent techniques for malware detection using these features. In this work we used Support Vector Machines (SVMs) and obtained an accuracy of 95% on a dataset containing 25000 malware and 12000 benign samples.","PeriodicalId":178381,"journal":{"name":"2013 IEEE Symposium on Computational Intelligence in Cyber Security (CICS)","volume":"320 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"121","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Symposium on Computational Intelligence in Cyber Security (CICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICYBS.2013.6597204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 121

Abstract

Malware detection is one of the challenging tasks in Cyber security. The advent of code obfuscation, metamorphic malware, packers and zero day attacks has made malware detection a challenging task. In this paper we present a visualization based approach for malware detection. First the executable is converted to a gray-scale image called byteplot. Later we extract low level features like intensity based and texture based features. We apply computationally intelligent techniques for malware detection using these features. In this work we used Support Vector Machines (SVMs) and obtained an accuracy of 95% on a dataset containing 25000 malware and 12000 benign samples.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于图像可视化的恶意软件检测
恶意软件检测是网络安全领域具有挑战性的任务之一。代码混淆、变形恶意软件、打包器和零日攻击的出现使得恶意软件检测成为一项具有挑战性的任务。本文提出了一种基于可视化的恶意软件检测方法。首先,可执行文件被转换为称为byteplot的灰度图像。然后我们提取低级特征,如基于强度和基于纹理的特征。我们利用这些特征应用计算智能技术进行恶意软件检测。在这项工作中,我们使用支持向量机(svm)在包含25000个恶意软件和12000个良性样本的数据集上获得了95%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quantifying encircling behaviour in complex networks What defines an intruder? An intelligent approach Evolving OWA operators for cyber security decision making problems Higher dimensional chaos for Audio encryption A novel hybrid-network intrusion detection system (H-NIDS) in cloud computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1