Antenna Array Beamforming Based on Deep Learning Neural Network Architectures

Haya Al Kassir, Z. Zaharis, P. Lazaridis, N. Kantartzis, T. Yioultsis, I. Chochliouros, A. Mihovska, T. Xenos
{"title":"Antenna Array Beamforming Based on Deep Learning Neural Network Architectures","authors":"Haya Al Kassir, Z. Zaharis, P. Lazaridis, N. Kantartzis, T. Yioultsis, I. Chochliouros, A. Mihovska, T. Xenos","doi":"10.23919/AT-AP-RASC54737.2022.9814201","DOIUrl":null,"url":null,"abstract":"The implementation of antenna array beamforming using several neural network (NN) architectures is compared in this paper. Gated recurrent unit, feed-forward NN, convolutional NN, and long short-term memory architectures have been used for the beamforming process. This comparative study is carried out using various metrics, such as the root mean square error, and the computational time for each NN. In addition, the mean absolute divergences of the antenna array main lobe and nulls directions from their respective desired directions have also been used to assess the performance of each beamformer. The neural networks are trained using the simulation results of a 16-element microstrip patch antenna array. It is demonstrated that deep learning-based beamformers are capable of computing optimum antenna array weights in real time and in environments that change with time.","PeriodicalId":356067,"journal":{"name":"2022 3rd URSI Atlantic and Asia Pacific Radio Science Meeting (AT-AP-RASC)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 3rd URSI Atlantic and Asia Pacific Radio Science Meeting (AT-AP-RASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/AT-AP-RASC54737.2022.9814201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The implementation of antenna array beamforming using several neural network (NN) architectures is compared in this paper. Gated recurrent unit, feed-forward NN, convolutional NN, and long short-term memory architectures have been used for the beamforming process. This comparative study is carried out using various metrics, such as the root mean square error, and the computational time for each NN. In addition, the mean absolute divergences of the antenna array main lobe and nulls directions from their respective desired directions have also been used to assess the performance of each beamformer. The neural networks are trained using the simulation results of a 16-element microstrip patch antenna array. It is demonstrated that deep learning-based beamformers are capable of computing optimum antenna array weights in real time and in environments that change with time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习神经网络架构的天线阵列波束形成
本文比较了几种神经网络结构在天线阵列波束形成中的应用。门控循环单元、前馈神经网络、卷积神经网络和长短期记忆结构已被用于波束形成过程。这种比较研究是使用各种指标进行的,例如均方根误差和每个神经网络的计算时间。此外,天线阵列主瓣和零瓣方向相对于各自期望方向的平均绝对散度也被用来评估每个波束形成器的性能。利用16元微带贴片天线阵列的仿真结果对神经网络进行了训练。研究表明,基于深度学习的波束形成器能够在实时和随时间变化的环境中计算出最佳的天线阵列权重。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Packaging of a Beamforming IC by Laser Enhanced Direct Print Additive Manufacturing (LE-DPAM) Multifunctional and Deployable Origami Antennas 3D Miniaturization Method and its Application to a Wearable Vivaldi Antenna Design of an impedance matched near field passive antenna for medical microwave radiometry Design of a mobile RFI monitoring station for DSA-2000 candidate sites surveys
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1