Predictive modeling methodology for compiler phase-ordering

Amir H. Ashouri, Andrea Bignoli, G. Palermo, C. Silvano
{"title":"Predictive modeling methodology for compiler phase-ordering","authors":"Amir H. Ashouri, Andrea Bignoli, G. Palermo, C. Silvano","doi":"10.1145/2872421.2872424","DOIUrl":null,"url":null,"abstract":"Today's compilers offer a huge number of transformation options to choose among and this choice can significantly impact on the performance of the code being optimized. Not only the selection of compiler options represents a hard problem to be solved, but also the ordering of the phases is adding further complexity, making it a long standing problem in compilation research. This paper presents an innovative approach for tackling the compiler phase-ordering problem by using predictive modeling. The proposed methodology enables i) to efficiently explore compiler exploration space including optimization permutations and repetitions and ii) to extract the application dynamic features to predict the next-best optimization to be applied to maximize the performance given the current status. Experimental results are done by assessing the proposed methodology with utilizing two different search heuristics on the compiler optimization space and it demonstrates the effectiveness of the methodology on the selected set of applications. Using the proposed methodology on average we observed up to 4% execution speedup with respect to LLVM standard baseline.","PeriodicalId":115716,"journal":{"name":"PARMA-DITAM '16","volume":"193 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PARMA-DITAM '16","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2872421.2872424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

Today's compilers offer a huge number of transformation options to choose among and this choice can significantly impact on the performance of the code being optimized. Not only the selection of compiler options represents a hard problem to be solved, but also the ordering of the phases is adding further complexity, making it a long standing problem in compilation research. This paper presents an innovative approach for tackling the compiler phase-ordering problem by using predictive modeling. The proposed methodology enables i) to efficiently explore compiler exploration space including optimization permutations and repetitions and ii) to extract the application dynamic features to predict the next-best optimization to be applied to maximize the performance given the current status. Experimental results are done by assessing the proposed methodology with utilizing two different search heuristics on the compiler optimization space and it demonstrates the effectiveness of the methodology on the selected set of applications. Using the proposed methodology on average we observed up to 4% execution speedup with respect to LLVM standard baseline.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
编译器相位排序的预测建模方法
今天的编译器提供了大量的转换选项供选择,这些选择会对优化代码的性能产生重大影响。编译器选项的选择不仅是一个难以解决的问题,而且阶段的排序也进一步增加了复杂性,使其成为编译研究中的一个长期问题。本文提出了一种利用预测建模解决编译器相位排序问题的创新方法。所提出的方法使i)能够有效地探索编译器探索空间,包括优化排列和重复;ii)提取应用程序的动态特征,以预测在给定当前状态下应用的次优优化,以最大限度地提高性能。通过在编译器优化空间上使用两种不同的搜索启发式方法来评估所提出的方法,实验结果表明了该方法在选定的一组应用程序上的有效性。使用建议的方法,我们观察到相对于LLVM标准基线,执行速度平均提高了4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Flexible resource allocation and management for application graphs on ReNÉ MPSoC Deploying and monitoring hadoop MapReduce analytics on single-chip cloud computer Stack size estimation on machine-independent intermediate code for OpenCL kernels Runtime resource management for embedded and HPC systems Low communication overhead dynamic mapping of multiple HEVC video stream decoding on NoCs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1