Tiny Time-Series Transformers: Realtime Multi-Target Sensor Inference At The Edge

T. Becnel, Kerry E Kelly, P. Gaillardon
{"title":"Tiny Time-Series Transformers: Realtime Multi-Target Sensor Inference At The Edge","authors":"T. Becnel, Kerry E Kelly, P. Gaillardon","doi":"10.1109/COINS54846.2022.9854988","DOIUrl":null,"url":null,"abstract":"Large-scale wireless sensor networks have become an invaluable tool for dense spatiotemporal modeling of urban air pollution. When coupled with complex nonlinear regression schemes, they become an unparalleled tool capable of dynamic, autonomous sensor calibration as well as completely latent parametric inference. In this work we present T3: The Tiny Time-Series Transformer, a hard-shared multi-target deep neural network based on the Transformer Encoder architecture and designed for multivariate realtime inference at the edge of large-scale environmental sensor networks. We demonstrate our approach by deploying T3 to an active pollution monitoring network, where it is tasked with the multi-target output of calibrated particulate matter and temperature, as well as the latent inference of tropospheric ozone, using fused time-series measurements from the onboard sensors as input. We show that T3 greatly outperforms classical linear regression techniques while matching accuracy of current state-of-the-art nonlinear regression architectures at a fraction of the footprint size.","PeriodicalId":187055,"journal":{"name":"2022 IEEE International Conference on Omni-layer Intelligent Systems (COINS)","volume":"133 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Omni-layer Intelligent Systems (COINS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COINS54846.2022.9854988","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Large-scale wireless sensor networks have become an invaluable tool for dense spatiotemporal modeling of urban air pollution. When coupled with complex nonlinear regression schemes, they become an unparalleled tool capable of dynamic, autonomous sensor calibration as well as completely latent parametric inference. In this work we present T3: The Tiny Time-Series Transformer, a hard-shared multi-target deep neural network based on the Transformer Encoder architecture and designed for multivariate realtime inference at the edge of large-scale environmental sensor networks. We demonstrate our approach by deploying T3 to an active pollution monitoring network, where it is tasked with the multi-target output of calibrated particulate matter and temperature, as well as the latent inference of tropospheric ozone, using fused time-series measurements from the onboard sensors as input. We show that T3 greatly outperforms classical linear regression techniques while matching accuracy of current state-of-the-art nonlinear regression architectures at a fraction of the footprint size.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
微型时间序列变压器:边缘的实时多目标传感器推断
大规模无线传感器网络已成为城市空气污染密集时空建模的宝贵工具。当与复杂的非线性回归方案相结合时,它们成为一种无与伦比的工具,能够动态,自主地校准传感器以及完全潜在的参数推断。在这项工作中,我们提出了T3: The Tiny Time-Series Transformer,这是一个基于Transformer Encoder架构的硬共享多目标深度神经网络,专为大规模环境传感器网络边缘的多元实时推理而设计。我们通过将T3部署到一个主动污染监测网络来演示我们的方法,该网络的任务是使用机载传感器的融合时间序列测量作为输入,输出校准的颗粒物和温度的多目标输出,以及对流层臭氧的潜在推断。我们表明,T3大大优于经典的线性回归技术,同时在占地面积的一小部分上匹配当前最先进的非线性回归架构的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Security risks in MQTT-based Industrial IoT Applications Time and Energy trade-off analysis for Multi-Installment Scheduling with result retrieval strategy for Large Scale data processing GANIBOT: A Network Flow Based Semi Supervised Generative Adversarial Networks Model for IoT Botnets Detection COINS 2022 Cover Page Interference Recognition for Fog Enabled IoT Architecture using a Novel Tree-based Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1