A. Solanas, A. Martínez-Ballesté, J. M. Mateo-Sanz, J. Domingo-Ferrer
{"title":"Multivariate Microaggregation Based Genetic Algorithms","authors":"A. Solanas, A. Martínez-Ballesté, J. M. Mateo-Sanz, J. Domingo-Ferrer","doi":"10.1109/IS.2006.348395","DOIUrl":null,"url":null,"abstract":"Microaggregation is a clustering problem with cardinality constraints that originated in the area of statistical disclosure control for micro data. This article presents a method for multivariate microaggregation based on genetic algorithms (GA). The adaptations required to characterize the multivariate microaggregation problem are explained and justified. Extensive experimentation has been carried out with the aim of finding the best values for the most relevant parameters of the modified GA: the population size and the crossover and mutation rates. The experimental results demonstrate that our method finds the optimal solution to the problem in almost all experiments when working with small data sets. Thus, for small data sets the proposed method performs better than known polynomial heuristics and can be combined with these for larger data sets. Moreover, a sensitivity analysis of parameter values is reported which shows the influence of the parameters and their best values","PeriodicalId":116809,"journal":{"name":"2006 3rd International IEEE Conference Intelligent Systems","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 3rd International IEEE Conference Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IS.2006.348395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24
Abstract
Microaggregation is a clustering problem with cardinality constraints that originated in the area of statistical disclosure control for micro data. This article presents a method for multivariate microaggregation based on genetic algorithms (GA). The adaptations required to characterize the multivariate microaggregation problem are explained and justified. Extensive experimentation has been carried out with the aim of finding the best values for the most relevant parameters of the modified GA: the population size and the crossover and mutation rates. The experimental results demonstrate that our method finds the optimal solution to the problem in almost all experiments when working with small data sets. Thus, for small data sets the proposed method performs better than known polynomial heuristics and can be combined with these for larger data sets. Moreover, a sensitivity analysis of parameter values is reported which shows the influence of the parameters and their best values