Multivariate Microaggregation Based Genetic Algorithms

A. Solanas, A. Martínez-Ballesté, J. M. Mateo-Sanz, J. Domingo-Ferrer
{"title":"Multivariate Microaggregation Based Genetic Algorithms","authors":"A. Solanas, A. Martínez-Ballesté, J. M. Mateo-Sanz, J. Domingo-Ferrer","doi":"10.1109/IS.2006.348395","DOIUrl":null,"url":null,"abstract":"Microaggregation is a clustering problem with cardinality constraints that originated in the area of statistical disclosure control for micro data. This article presents a method for multivariate microaggregation based on genetic algorithms (GA). The adaptations required to characterize the multivariate microaggregation problem are explained and justified. Extensive experimentation has been carried out with the aim of finding the best values for the most relevant parameters of the modified GA: the population size and the crossover and mutation rates. The experimental results demonstrate that our method finds the optimal solution to the problem in almost all experiments when working with small data sets. Thus, for small data sets the proposed method performs better than known polynomial heuristics and can be combined with these for larger data sets. Moreover, a sensitivity analysis of parameter values is reported which shows the influence of the parameters and their best values","PeriodicalId":116809,"journal":{"name":"2006 3rd International IEEE Conference Intelligent Systems","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 3rd International IEEE Conference Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IS.2006.348395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

Microaggregation is a clustering problem with cardinality constraints that originated in the area of statistical disclosure control for micro data. This article presents a method for multivariate microaggregation based on genetic algorithms (GA). The adaptations required to characterize the multivariate microaggregation problem are explained and justified. Extensive experimentation has been carried out with the aim of finding the best values for the most relevant parameters of the modified GA: the population size and the crossover and mutation rates. The experimental results demonstrate that our method finds the optimal solution to the problem in almost all experiments when working with small data sets. Thus, for small data sets the proposed method performs better than known polynomial heuristics and can be combined with these for larger data sets. Moreover, a sensitivity analysis of parameter values is reported which shows the influence of the parameters and their best values
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多元微聚集的遗传算法
微聚集是一种具有基数约束的聚类问题,起源于微观数据的统计披露控制领域。提出了一种基于遗传算法的多元微聚合方法。描述多变量微聚集问题所需的适应性被解释和证明。为了找到改进遗传算法的最相关参数:种群大小、交叉率和突变率的最佳值,进行了大量的实验。实验结果表明,当处理小数据集时,我们的方法在几乎所有的实验中都能找到问题的最优解。因此,对于小数据集,所提出的方法比已知的多项式启发式方法性能更好,并且可以与这些方法结合使用以处理更大的数据集。此外,还报道了参数值的敏感性分析,显示了参数及其最佳值的影响
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Neurofuzzy Adaptive Kalman Filter Artificial Intelligence Technique for Gene Expression Profiling of Urinary Bladder Cancer Evolutionary Support Vector Machines for Diabetes Mellitus Diagnosis IGUANA: Individuation of Global Unsafe ANomalies and Alarm activation Smart Data Analysis Services
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1