Housing Price Forecastability: A Factor Analysis

Lasse Bork, S. Møller
{"title":"Housing Price Forecastability: A Factor Analysis","authors":"Lasse Bork, S. Møller","doi":"10.1111/1540-6229.12185","DOIUrl":null,"url":null,"abstract":"We examine U.S. housing price forecastability using principal component analysis (PCA), partial least squares (PLS), and sparse PLS (SPLS). We incorporate information from a large panel of 128 economic time series and show that macroeconomic fundamentals have strong predictive power for future movements in housing prices. We find that (S)PLS models systematically dominate PCA models. (S)PLS models also generate significant out-of-sample predictive power over and above the predictive power contained by the price-rent ratio, autoregressive benchmarks, and regression models based on small datasets.","PeriodicalId":445951,"journal":{"name":"ERN: Forecasting & Simulation (Prices) (Topic)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Forecasting & Simulation (Prices) (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/1540-6229.12185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48

Abstract

We examine U.S. housing price forecastability using principal component analysis (PCA), partial least squares (PLS), and sparse PLS (SPLS). We incorporate information from a large panel of 128 economic time series and show that macroeconomic fundamentals have strong predictive power for future movements in housing prices. We find that (S)PLS models systematically dominate PCA models. (S)PLS models also generate significant out-of-sample predictive power over and above the predictive power contained by the price-rent ratio, autoregressive benchmarks, and regression models based on small datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
房价可预测性:一个因素分析
我们使用主成分分析(PCA)、偏最小二乘(PLS)和稀疏PLS (SPLS)来检验美国房价的可预测性。我们整合了来自128个经济时间序列的信息,并表明宏观经济基本面对未来房价走势具有很强的预测能力。我们发现(S)PLS模型系统地优于PCA模型。(S)PLS模型也产生显著的样本外预测能力,高于价格租金比、自回归基准和基于小数据集的回归模型所包含的预测能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Identifying Aggregate Demand and Supply Shocks Using Sign Restrictions and Higher-Order Moments Natural Unemployment and Activity Rates: Flow-Based Determinants and Implications for Price Dynamics The Link between Unemployment and Real Economic Growth in Developed Countries Inflation Expectations in Euro Area Phillips Curves Postwar Business Cycles: What Are the Prime Drivers?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1