Emergent Control of MPSoC Operation by a Hierarchical Supervisor / Reinforcement Learning Approach

F. Maurer, Bryan Donyanavard, A. Rahmani, N. Dutt, A. Herkersdorf
{"title":"Emergent Control of MPSoC Operation by a Hierarchical Supervisor / Reinforcement Learning Approach","authors":"F. Maurer, Bryan Donyanavard, A. Rahmani, N. Dutt, A. Herkersdorf","doi":"10.23919/DATE48585.2020.9116574","DOIUrl":null,"url":null,"abstract":"MPSoCs increasingly depend on adaptive resource management strategies at runtime for efficient utilization of resources when executing complex application workloads. In particular, conflicting demands for adequate computation performance and power-/energy-efficiency constraints make desired application goals hard to achieve. We present a hierarchical, cross-layer hardware/software resource manager capable of adapting to changing workloads and system dynamics with zero initial knowledge. The manager uses rule-based reinforcement learning classifier tables (LCTs) with an archive-based backup policy as leaf controllers. The LCTs directly manipulate and enforce MPSoC building block operation parameters in order to explore and optimize potentially conflicting system requirements (e.g., meeting a performance target while staying within the power constraint). A supervisor translates system requirements and application goals into per-LCT objective functions (e.g., core instructions-per-second (IPS). Thus, the supervisor manages the possibly emergent behavior of the low-level LCT controllers in response to 1) switching between operation strategies (e.g., maximize performance vs. minimize power; and 2) changing application requirements. This hierarchical manager leverages the dual benefits of a software supervisor (enabling flexibility), together with hardware learners (allowing quick and efficient optimization). Experiments on an FPGA prototype confirmed the ability of our approach to identify optimized MPSoC operation parameters at runtime while strictly obeying given power constraints.","PeriodicalId":289525,"journal":{"name":"2020 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"217 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/DATE48585.2020.9116574","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

MPSoCs increasingly depend on adaptive resource management strategies at runtime for efficient utilization of resources when executing complex application workloads. In particular, conflicting demands for adequate computation performance and power-/energy-efficiency constraints make desired application goals hard to achieve. We present a hierarchical, cross-layer hardware/software resource manager capable of adapting to changing workloads and system dynamics with zero initial knowledge. The manager uses rule-based reinforcement learning classifier tables (LCTs) with an archive-based backup policy as leaf controllers. The LCTs directly manipulate and enforce MPSoC building block operation parameters in order to explore and optimize potentially conflicting system requirements (e.g., meeting a performance target while staying within the power constraint). A supervisor translates system requirements and application goals into per-LCT objective functions (e.g., core instructions-per-second (IPS). Thus, the supervisor manages the possibly emergent behavior of the low-level LCT controllers in response to 1) switching between operation strategies (e.g., maximize performance vs. minimize power; and 2) changing application requirements. This hierarchical manager leverages the dual benefits of a software supervisor (enabling flexibility), together with hardware learners (allowing quick and efficient optimization). Experiments on an FPGA prototype confirmed the ability of our approach to identify optimized MPSoC operation parameters at runtime while strictly obeying given power constraints.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于分层监督/强化学习方法的MPSoC运行紧急控制
mpsoc在运行时越来越依赖于自适应资源管理策略,以便在执行复杂的应用程序工作负载时有效地利用资源。特别是,对足够的计算性能和功率/能源效率约束的冲突需求使得期望的应用程序目标难以实现。我们提出了一种分层的、跨层的硬件/软件资源管理器,能够适应不断变化的工作负载和系统动态,而无需初始知识。管理器使用基于规则的强化学习分类器表(lct)和基于存档的备份策略作为叶子控制器。lct直接操纵和执行MPSoC构建块操作参数,以探索和优化潜在的冲突系统需求(例如,在保持功率约束的同时满足性能目标)。主管将系统需求和应用程序目标转换为每个lct的目标函数(例如,每秒核心指令数(IPS))。因此,管理者管理低层LCT控制器可能出现的紧急行为,以响应1)操作策略之间的切换(例如,性能最大化vs功率最小化;2)不断变化的应用需求。这个分层管理器利用了软件管理器(实现灵活性)和硬件学习器(允许快速有效的优化)的双重好处。在FPGA原型上的实验证实了我们的方法能够在严格遵守给定功率限制的情况下,在运行时识别优化的MPSoC操作参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
In-Memory Resistive RAM Implementation of Binarized Neural Networks for Medical Applications Towards Formal Verification of Optimized and Industrial Multipliers A 100KHz-1GHz Termination-dependent Human Body Communication Channel Measurement using Miniaturized Wearable Devices Computational SRAM Design Automation using Pushed-Rule Bitcells for Energy-Efficient Vector Processing PIM-Aligner: A Processing-in-MRAM Platform for Biological Sequence Alignment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1