Conditional Wasserstein Auto-Encoder for Interactive Vehicle Trajectory Prediction

Cong Fei, Xiangkun He, Sadahiro Kawahara, S. Nakano, Xuewu Ji
{"title":"Conditional Wasserstein Auto-Encoder for Interactive Vehicle Trajectory Prediction","authors":"Cong Fei, Xiangkun He, Sadahiro Kawahara, S. Nakano, Xuewu Ji","doi":"10.1109/ITSC45102.2020.9294482","DOIUrl":null,"url":null,"abstract":"Trajectory prediction is a crucial task required for autonomous driving. The highly interactions and uncertainties in real-world traffic scenarios make it a challenge to generate trajectories that are accurate, reasonable and covering diverse modality as much as possible. This paper propose a conditional Wasserstein auto-encoder trajectory prediction model (TrajCWAE) that combines the representation learning and variational inference to generate predictions with multi-modal nature. TrajCWAE model leverages a context embedder to learn the intentions among vehicles and imposes Gaussian mixture model to reconstruct the prior and posterior distributions. Wasserstein generative adversarial framework is then used to match the aggregated posterior distribution with prior distribution. Furthermore, kinematic constraints are considered to make the prediction physically feasible and socially acceptable. Experiments on two scenarios demonstrate that the proposed model outperforms state-of-the-art methods, achieving better accuracy, diversity and coverage.","PeriodicalId":394538,"journal":{"name":"2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC45102.2020.9294482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Trajectory prediction is a crucial task required for autonomous driving. The highly interactions and uncertainties in real-world traffic scenarios make it a challenge to generate trajectories that are accurate, reasonable and covering diverse modality as much as possible. This paper propose a conditional Wasserstein auto-encoder trajectory prediction model (TrajCWAE) that combines the representation learning and variational inference to generate predictions with multi-modal nature. TrajCWAE model leverages a context embedder to learn the intentions among vehicles and imposes Gaussian mixture model to reconstruct the prior and posterior distributions. Wasserstein generative adversarial framework is then used to match the aggregated posterior distribution with prior distribution. Furthermore, kinematic constraints are considered to make the prediction physically feasible and socially acceptable. Experiments on two scenarios demonstrate that the proposed model outperforms state-of-the-art methods, achieving better accuracy, diversity and coverage.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
交互式车辆轨迹预测的条件Wasserstein自编码器
轨迹预测是自动驾驶的一项重要任务。现实交通场景的高度相互作用和不确定性使得生成准确、合理且尽可能覆盖多种模式的轨迹成为一项挑战。本文提出了一种结合表征学习和变分推理的条件Wasserstein自编码器轨迹预测模型(TrajCWAE),以生成具有多模态性质的预测。TrajCWAE模型利用上下文嵌入器来学习车辆之间的意图,并施加高斯混合模型来重建先验和后验分布。然后使用Wasserstein生成对抗框架将聚合后验分布与先验分布进行匹配。此外,考虑了运动学约束,使预测在物理上可行和社会上可接受。在两个场景下的实验表明,该模型优于现有的方法,具有更好的精度、多样性和覆盖范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CR-TMS: Connected Vehicles enabled Road Traffic Congestion Mitigation System using Virtual Road Capacity Inflation A novel concept for validation of pre-crash perception sensor information using contact sensor Space-time Map based Path Planning Scheme in Large-scale Intelligent Warehouse System Weakly-supervised Road Condition Classification Using Automatically Generated Labels Studying the Impact of Public Transport on Disaster Evacuation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1