Multiscale method based on spline regression for comparing multiple nonparametric curves

Na Li, Xuhua Liu
{"title":"Multiscale method based on spline regression for comparing multiple nonparametric curves","authors":"Na Li, Xuhua Liu","doi":"10.1109/FSKD.2017.8393375","DOIUrl":null,"url":null,"abstract":"SiZer (SIgnificant ZERo crossing of the derivatives) is a powerful scale-space visualization technique for exploratory data analysis. In this paper a new version of SiZer based on regression spline is proposed for comparing multiple regression curves. The new SiZer is constructed on the basis of p-values for testing the equality of multiple regression functions at different locations and scales. Fiducial inference and regression spline are applied to gain the p-values. In addition, multiple testing adjustments are carried out to control the row-wise false discovery rate and family-wise error rate of the proposed SiZer, respectively. The new SiZer is more powerful even in the case of small sample size case due to the good properties of p-value and FDR control. Simulation results show that the new SiZer performs well compared with the existing SiZers. Finally, a real data example is carried out to illustrate its usage in applications.","PeriodicalId":236093,"journal":{"name":"2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FSKD.2017.8393375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

SiZer (SIgnificant ZERo crossing of the derivatives) is a powerful scale-space visualization technique for exploratory data analysis. In this paper a new version of SiZer based on regression spline is proposed for comparing multiple regression curves. The new SiZer is constructed on the basis of p-values for testing the equality of multiple regression functions at different locations and scales. Fiducial inference and regression spline are applied to gain the p-values. In addition, multiple testing adjustments are carried out to control the row-wise false discovery rate and family-wise error rate of the proposed SiZer, respectively. The new SiZer is more powerful even in the case of small sample size case due to the good properties of p-value and FDR control. Simulation results show that the new SiZer performs well compared with the existing SiZers. Finally, a real data example is carried out to illustrate its usage in applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于样条回归的多尺度非参数曲线比较方法
SiZer(导数的显著零交叉)是一种用于探索性数据分析的强大的尺度空间可视化技术。本文提出了一个基于回归样条的新版本的SiZer,用于比较多个回归曲线。新的SiZer是在p值的基础上构建的,用于检验多个回归函数在不同位置和尺度上的相等性。采用基准推理和回归样条法获得p值。此外,还进行了多次测试调整,分别控制了所提出的SiZer的逐行错误发现率和逐族错误率。由于p值和FDR控制的良好特性,新的SiZer即使在小样本量的情况下也更强大。仿真结果表明,与现有的分级器相比,新分级器性能良好。最后,通过一个实际的数据实例说明了该方法在应用中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Space syntax and time distance based analysis on the influences of the subways to the pubic traffic accessibility in Nanchang city Designing fuzzy apparatus to model dyslexic individual symptoms for clinical use A kNN classifier optimized by P systems Research on optimal operation of cascade hydropower station based on improved biogeography-based optimization algorithm An estimation algorithm of time-varying channels in the OFDM communication system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1