{"title":"Specification of Dynamic Fault Tree Concepts with Stochastic Petri Nets","authors":"Lena Feinbube, Peter Tröger","doi":"10.1109/SERE.2014.31","DOIUrl":null,"url":null,"abstract":"Dependability modeling describes a set of approaches for analyzing the reliability of software and hardware systems. The most prominent approach are fault trees, which hierarchically express the causal dependencies between basic faults and an undesired failure event. Dynamic fault trees allow to express sequence-dependent error propagation, which is commonly found in software systems. In this paper, we present a complete behavioral specification of well-known dynamic fault tree concepts. We provide a novel connection rule definition for all commonly accepted node types, in combination with a description of their behavioral semantics in generalized stochastic petri nets. Both specifications together are not available in literature so far. The application of these specifications in fault tree generation and modeling tools can help to prevent syntactical and semantical ambiguity in the generated output.","PeriodicalId":248957,"journal":{"name":"2014 Eighth International Conference on Software Security and Reliability","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Eighth International Conference on Software Security and Reliability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SERE.2014.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Dependability modeling describes a set of approaches for analyzing the reliability of software and hardware systems. The most prominent approach are fault trees, which hierarchically express the causal dependencies between basic faults and an undesired failure event. Dynamic fault trees allow to express sequence-dependent error propagation, which is commonly found in software systems. In this paper, we present a complete behavioral specification of well-known dynamic fault tree concepts. We provide a novel connection rule definition for all commonly accepted node types, in combination with a description of their behavioral semantics in generalized stochastic petri nets. Both specifications together are not available in literature so far. The application of these specifications in fault tree generation and modeling tools can help to prevent syntactical and semantical ambiguity in the generated output.