An Isolated Sign Language Recognition System Using RGB-D Sensor with Sparse Coding

Yongjun Jiang, Jinxu Tao, Weiquan Ye, Wu Wang, Z. Ye
{"title":"An Isolated Sign Language Recognition System Using RGB-D Sensor with Sparse Coding","authors":"Yongjun Jiang, Jinxu Tao, Weiquan Ye, Wu Wang, Z. Ye","doi":"10.1109/CSE.2014.38","DOIUrl":null,"url":null,"abstract":"An isolated sign language recognition system is presented in this paper. A RGB-D sensor, Microsoft Kinect, is used for obtaining color stream and skeleton points from the depth stream. For a particular sign we extract a representative feature vector composed by hand trajectories and hand shapes. A sparse dictionary learning algorithm, Label Consistent K-SVD (LC-KSVD), is applied to obtain a discriminative dictionary. Based on that, we further develop a new classification approach to get better result. Our system is evaluated on 34 isolated Chinese sign words including one-handed signs and two-handed signs. Experimental results show the proposed system gets high recognition accuracy, of the reported 96.75%, and obtain an average accuracy of 92.36% for signer independent recognition.","PeriodicalId":258990,"journal":{"name":"2014 IEEE 17th International Conference on Computational Science and Engineering","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 17th International Conference on Computational Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSE.2014.38","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

An isolated sign language recognition system is presented in this paper. A RGB-D sensor, Microsoft Kinect, is used for obtaining color stream and skeleton points from the depth stream. For a particular sign we extract a representative feature vector composed by hand trajectories and hand shapes. A sparse dictionary learning algorithm, Label Consistent K-SVD (LC-KSVD), is applied to obtain a discriminative dictionary. Based on that, we further develop a new classification approach to get better result. Our system is evaluated on 34 isolated Chinese sign words including one-handed signs and two-handed signs. Experimental results show the proposed system gets high recognition accuracy, of the reported 96.75%, and obtain an average accuracy of 92.36% for signer independent recognition.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于RGB-D传感器的稀疏编码孤立手语识别系统
提出了一种孤立的手语识别系统。RGB-D传感器,微软Kinect,用于从深度流中获取颜色流和骨架点。对于特定的手势,我们提取由手部轨迹和手部形状组成的代表性特征向量。采用稀疏字典学习算法标签一致K-SVD (LC-KSVD)获得判别字典。在此基础上,我们进一步开发了一种新的分类方法,以获得更好的分类效果。该系统对34个孤立的汉语手语进行了评价,包括单手手势和双手手势。实验结果表明,该系统的识别率达到96.75%,对签名人独立识别的平均识别率达到92.36%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Is Really NACK Protocol Secure to Be Employed in MANETs? Design of an X-Band Negative Resistance Oscillator Based on the ASIW in Modern Wireless Communication Systems Evolutionary Computation with Multi-variates Hybrid Multi-order Fuzzy Time Series for Stock Forecasting WiPCon: A Proxied Control Plane for Wireless Access Points in Software Defined Networks Design of Non-autonomous Chaotic Generalized Synchronization Based Pseudorandom Number Generator with Application in Avalanche Image Encryption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1