Maierdang Keyimu, Zongshan Li, B. Fu, Guo-hua Liu, Weiliang Chen, Z. Fan, Keyan Fang, Xiuchen Wu, Xiaochun Wang
{"title":"531-year non-growth season precipitation reconstruction in the \nsoutheastern Tibetan Plateau","authors":"Maierdang Keyimu, Zongshan Li, B. Fu, Guo-hua Liu, Weiliang Chen, Z. Fan, Keyan Fang, Xiuchen Wu, Xiaochun Wang","doi":"10.5194/CP-2021-13","DOIUrl":null,"url":null,"abstract":"Abstract. Trees record climatic conditions during their growth, and tree-rings serve as a proxy to reveal the features of the historical climate of a region. In this study, we collected tree-ring cores of forest hemlock (Tsuga forrestii) from the northwestern Yunnan area of the southeastern Tibetan Plateau (SETP), and created a residual tree-ring width (TRW) chronology. An analysis of the relationship between tree growth and climate revealed that precipitation during the non-growth season (NGS) (from November of the previous year to February of the current year) was the most important constraining factor on the radial tree growth of forest hemlock in this region. In addition, the influence of NGS precipitation on radial tree growth was relatively uniform over time (1956–2005). Accordingly, we reconstructed the NGS precipitation over the period spanning from A.D. 1475–2005. The reconstruction accounted for 28.5 % of the actual variance during the common period 1956–2005, and the leave-one-out verification parameters indicated the reliability of the reconstruction. Based on the reconstruction, NGS was extremely dry during the years A.D. 1475, 1656, 1670, 1694, 1703, 1736, 1897, 1907, 1943, 1969, 1982, and 1999. In contrast, the NGS was extremely wet during the years A.D. 1491, 1536, 1558, 1627, 1638, 1654, 1832, 1834–1835, and 1992. Similar variations of the NGS precipitation reconstruction series and Palmer Drought Severity Index (PDSI) reconstructions from surrounding regions indicated the reliability of the reconstruction. A comparison of the reconstruction with Climate Research Unit (CRU) gridded data revealed that our reconstruction was representative of the NGS precipitation variability of a large region in the SETP.","PeriodicalId":263057,"journal":{"name":"Climate of The Past Discussions","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Climate of The Past Discussions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/CP-2021-13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract. Trees record climatic conditions during their growth, and tree-rings serve as a proxy to reveal the features of the historical climate of a region. In this study, we collected tree-ring cores of forest hemlock (Tsuga forrestii) from the northwestern Yunnan area of the southeastern Tibetan Plateau (SETP), and created a residual tree-ring width (TRW) chronology. An analysis of the relationship between tree growth and climate revealed that precipitation during the non-growth season (NGS) (from November of the previous year to February of the current year) was the most important constraining factor on the radial tree growth of forest hemlock in this region. In addition, the influence of NGS precipitation on radial tree growth was relatively uniform over time (1956–2005). Accordingly, we reconstructed the NGS precipitation over the period spanning from A.D. 1475–2005. The reconstruction accounted for 28.5 % of the actual variance during the common period 1956–2005, and the leave-one-out verification parameters indicated the reliability of the reconstruction. Based on the reconstruction, NGS was extremely dry during the years A.D. 1475, 1656, 1670, 1694, 1703, 1736, 1897, 1907, 1943, 1969, 1982, and 1999. In contrast, the NGS was extremely wet during the years A.D. 1491, 1536, 1558, 1627, 1638, 1654, 1832, 1834–1835, and 1992. Similar variations of the NGS precipitation reconstruction series and Palmer Drought Severity Index (PDSI) reconstructions from surrounding regions indicated the reliability of the reconstruction. A comparison of the reconstruction with Climate Research Unit (CRU) gridded data revealed that our reconstruction was representative of the NGS precipitation variability of a large region in the SETP.