Using Artificial Neural Networks to Predict Solar Radiation for Duhok City, Iraq

B. H. Mahdi, K. Yousif, Luqman MS. Dosky
{"title":"Using Artificial Neural Networks to Predict Solar Radiation for Duhok City, Iraq","authors":"B. H. Mahdi, K. Yousif, Luqman MS. Dosky","doi":"10.1109/CSASE48920.2020.9142119","DOIUrl":null,"url":null,"abstract":"The amount of solar radiation received at the Earth’s surface is influenced by local weather conditions. This paper investigates the effects of meteorological parameters on daily average solar radiation (DASR) in Duhok city, Iraq. Artificial Neural Networks (ANNs) based on multilayer preceptor feed-forward (MLP-FF) techniques are used to predict daily average solar radiation (DASR). The input variables used are a daily average of the relative humidity (RH), minimum temperature (Tmin), maximum temperature (Tmax), wind speed (WS), cloud layer (CL), atmospheric pressure (AP) and ultraviolet (UV) levels to estimate DASR. To identify and evaluate the effects of various input parameters on solar radiation, eight ANN-based models have been developed. To obtain the best estimation results, the number of neurons in the hidden layer has been varied. The best values of the Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and correlation coefficient (R) have been calculated. For some models, the results obtained show good and better predictive accuracy than others. The present study indicates that various of the meteorological parameters can have a significant effect on the forecasting of solar radiation.","PeriodicalId":254581,"journal":{"name":"2020 International Conference on Computer Science and Software Engineering (CSASE)","volume":"187 9","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Computer Science and Software Engineering (CSASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSASE48920.2020.9142119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The amount of solar radiation received at the Earth’s surface is influenced by local weather conditions. This paper investigates the effects of meteorological parameters on daily average solar radiation (DASR) in Duhok city, Iraq. Artificial Neural Networks (ANNs) based on multilayer preceptor feed-forward (MLP-FF) techniques are used to predict daily average solar radiation (DASR). The input variables used are a daily average of the relative humidity (RH), minimum temperature (Tmin), maximum temperature (Tmax), wind speed (WS), cloud layer (CL), atmospheric pressure (AP) and ultraviolet (UV) levels to estimate DASR. To identify and evaluate the effects of various input parameters on solar radiation, eight ANN-based models have been developed. To obtain the best estimation results, the number of neurons in the hidden layer has been varied. The best values of the Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and correlation coefficient (R) have been calculated. For some models, the results obtained show good and better predictive accuracy than others. The present study indicates that various of the meteorological parameters can have a significant effect on the forecasting of solar radiation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用人工神经网络预测伊拉克杜霍克市的太阳辐射
地球表面接收到的太阳辐射量受当地天气条件的影响。本文研究了气象参数对伊拉克杜霍克市日平均太阳辐射(DASR)的影响。基于多层感知前馈(MLP-FF)技术的人工神经网络(ann)被用于预测日平均太阳辐射(DASR)。输入变量是相对湿度(RH)、最低温度(Tmin)、最高温度(Tmax)、风速(WS)、云层(CL)、大气压力(AP)和紫外线(UV)水平的日平均值,用于估计DASR。为了识别和评估各种输入参数对太阳辐射的影响,开发了八个基于人工神经网络的模型。为了获得最佳的估计结果,隐层神经元的数量发生了变化。计算了均方根误差(RMSE)、平均绝对误差(MAE)和相关系数(R)的最佳值。对于某些模型,所得结果显示出较好的预测精度。本研究表明,各种气象参数对太阳辐射的预报有显著影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
IoT Based Water Tank Level Control System Using PLC Performance Evaluation of Dual Polarization Coherent Detection Optical for Next Generation of UWOC Systems An Automated Vertebrate Animals Classification Using Deep Convolution Neural Networks CSASE 2020 Keynote Speakers-1 A Secure Mechanism to Prevent ARP Spoofing and ARP Broadcasting in SDN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1