Pixel-Level Feature Clustering Learning for Image Anomaly Detection and Localization

Huang Chao
{"title":"Pixel-Level Feature Clustering Learning for Image Anomaly Detection and Localization","authors":"Huang Chao","doi":"10.1109/ICCWAMTIP56608.2022.10016612","DOIUrl":null,"url":null,"abstract":"Image anomaly detection and localization not only need to provide image-level anomaly judgment but also need to locate pixel-level anomaly areas. This paper proposes a model named pixelAD, which builds an end-to-end network through pixel- level feature clustering learning to solve this problem. The normal prototype is obtained during training by clustering the normal pixel-level features. We generate pixel-level cluster labels of normal samples according to the prototypes, which guide the model to update parameters by calculating the assignment loss. For inference, pixelAD directly outputs the pixel-level anomaly score end-to-end. The experimental results of the real industrial dataset MVTecAD show that PixelAD has an excellent performance in anomaly detection and anomaly localization.","PeriodicalId":159508,"journal":{"name":"2022 19th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 19th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCWAMTIP56608.2022.10016612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Image anomaly detection and localization not only need to provide image-level anomaly judgment but also need to locate pixel-level anomaly areas. This paper proposes a model named pixelAD, which builds an end-to-end network through pixel- level feature clustering learning to solve this problem. The normal prototype is obtained during training by clustering the normal pixel-level features. We generate pixel-level cluster labels of normal samples according to the prototypes, which guide the model to update parameters by calculating the assignment loss. For inference, pixelAD directly outputs the pixel-level anomaly score end-to-end. The experimental results of the real industrial dataset MVTecAD show that PixelAD has an excellent performance in anomaly detection and anomaly localization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
图像异常检测与定位的像素级特征聚类学习
图像异常检测与定位不仅需要提供图像级的异常判断,还需要定位像素级的异常区域。本文提出了一个名为pixelAD的模型,该模型通过像素级特征聚类学习构建端到端网络来解决这一问题。在训练过程中,通过对正常像素级特征聚类得到正常原型。我们根据原型生成正常样本的像素级聚类标签,通过计算分配损失来指导模型更新参数。对于推理,pixelAD直接端到端输出像素级异常评分。在真实工业数据集MVTecAD上的实验结果表明,PixelAD在异常检测和异常定位方面具有优异的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Subcortico-Cortical Interactions Of Edge Functional Connectivity In Parkinson’s Disease Feature Modeling and Dimensionality Reduction to Improve ML-Based DDOS Detection Systems in SDN Environment Research on the "Deep Integration" of Information Technology and Precise Civic Education in Universities Knowledge Extraction and Discrimination Based Calibration on Medical Imaging Classification AW-PCNN: Adaptive Weighting Pyramidal Convolutional Neural Network for Fine-Grained Few-Shot Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1