Medical warning system based on Internet of Things using fog computing

I. Azimi, A. Anzanpour, A. Rahmani, P. Liljeberg, T. Salakoski
{"title":"Medical warning system based on Internet of Things using fog computing","authors":"I. Azimi, A. Anzanpour, A. Rahmani, P. Liljeberg, T. Salakoski","doi":"10.1109/IWBIS.2016.7872884","DOIUrl":null,"url":null,"abstract":"Remote patient monitoring is essential for many patients that are suffering from acute diseases such as different heart conditions. Continuous health monitoring can provide medical services that consider the current medical state of the patient and to predict or early-detect future potentially critical situations. In this regard, Internet of Things as a multidisciplinary paradigm can provide profound impacts. However, the current IoT-based systems may encounter difficulties to provide continuous and real time patient monitoring due to issues in data analytics. In this paper, we introduce a new IoT-based approach to offer smart medical warning in personalized patient monitoring. The proposed approach consider local computing paradigm enabled by machine learning algorithms and automate management of system components in computing section. The proposed system is evaluated via a case study concerning continuous patient monitoring to early-detect patient deterioration via arrhythmia in ECG signal.","PeriodicalId":193821,"journal":{"name":"2016 International Workshop on Big Data and Information Security (IWBIS)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Workshop on Big Data and Information Security (IWBIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWBIS.2016.7872884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

Abstract

Remote patient monitoring is essential for many patients that are suffering from acute diseases such as different heart conditions. Continuous health monitoring can provide medical services that consider the current medical state of the patient and to predict or early-detect future potentially critical situations. In this regard, Internet of Things as a multidisciplinary paradigm can provide profound impacts. However, the current IoT-based systems may encounter difficulties to provide continuous and real time patient monitoring due to issues in data analytics. In this paper, we introduce a new IoT-based approach to offer smart medical warning in personalized patient monitoring. The proposed approach consider local computing paradigm enabled by machine learning algorithms and automate management of system components in computing section. The proposed system is evaluated via a case study concerning continuous patient monitoring to early-detect patient deterioration via arrhythmia in ECG signal.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于雾计算的物联网医疗预警系统
对于许多患有不同心脏病等急性疾病的患者来说,远程患者监测是必不可少的。持续健康监测可以提供医疗服务,考虑患者当前的医疗状态,并预测或早期发现未来潜在的危急情况。在这方面,物联网作为一个多学科的范式可以提供深远的影响。然而,由于数据分析方面的问题,目前基于物联网的系统可能难以提供持续和实时的患者监测。在本文中,我们介绍了一种新的基于物联网的方法,在个性化患者监护中提供智能医疗警报。该方法考虑了由机器学习算法支持的局部计算范式,并在计算部分实现了系统组件的自动化管理。通过一个案例研究,对该系统进行了评估,该系统通过心电信号中的心律失常来早期检测患者的病情恶化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Advancing public health genomics Overview of research center for information technology innovation in Taiwan Academia Sinica A survey of whole genome alignment tools and frameworks based on Hadoop's MapReduce Design and implementation of merchant acquirer data warehouse at PT. XYZ Spatial data mining for predicting of unobserved zinc pollutant using ordinary point Kriging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1