Detecting objects, shadows and ghosts in video streams by exploiting color and motion information

R. Cucchiara, C. Grana, A. Prati, M. Piccardi
{"title":"Detecting objects, shadows and ghosts in video streams by exploiting color and motion information","authors":"R. Cucchiara, C. Grana, A. Prati, M. Piccardi","doi":"10.1109/ICIAP.2001.957036","DOIUrl":null,"url":null,"abstract":"Many approaches to moving object detection for traffic monitoring and video surveillance proposed in the literature are based on background suppression methods. How to correctly and efficiently update the background model and how to deal with shadows are two of the more distinguishing and challenging features of such approaches. This work presents a general-purpose method for segmentation of moving visual objects (MVO) based on an object-level classification in MVO, ghosts and shadows. Background suppression needs the background model to be estimated and updated: we use motion and shadow information to selectively exclude from the background model MVO and their shadows, while retaining ghosts. The color information (in the HSV color space) is exploited to shadow suppression and, consequently, to enhance both MVO segmentation and background update.","PeriodicalId":365627,"journal":{"name":"Proceedings 11th International Conference on Image Analysis and Processing","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"165","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 11th International Conference on Image Analysis and Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIAP.2001.957036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 165

Abstract

Many approaches to moving object detection for traffic monitoring and video surveillance proposed in the literature are based on background suppression methods. How to correctly and efficiently update the background model and how to deal with shadows are two of the more distinguishing and challenging features of such approaches. This work presents a general-purpose method for segmentation of moving visual objects (MVO) based on an object-level classification in MVO, ghosts and shadows. Background suppression needs the background model to be estimated and updated: we use motion and shadow information to selectively exclude from the background model MVO and their shadows, while retaining ghosts. The color information (in the HSV color space) is exploited to shadow suppression and, consequently, to enhance both MVO segmentation and background update.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过利用颜色和运动信息来检测视频流中的物体、阴影和幽灵
文献中提出的许多用于交通监控和视频监控的运动目标检测方法都是基于背景抑制方法。如何正确有效地更新背景模型和如何处理阴影是这类方法中比较显著和具有挑战性的两个特点。本文提出了一种基于MVO、鬼影和阴影的对象级分类的运动视觉对象(MVO)的通用分割方法。背景抑制需要对背景模型进行估计和更新:我们利用运动和阴影信息选择性地从背景模型中排除MVO及其阴影,同时保留鬼影。颜色信息(在HSV颜色空间中)被用于阴影抑制,因此,增强了MVO分割和背景更新。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Circle detection based on orientation matching Towards teleconferencing by view synthesis and large-baseline stereo Learning and caricaturing the face space using self-organization and Hebbian learning for face processing Bayesian face recognition with deformable image models Using feature-vector based analysis, based on principal component analysis and independent component analysis, for analysing hyperspectral images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1