Recursive Statistical Blockade: An Enhanced Technique for Rare Event Simulation with Application to SRAM Circuit Design

Amith Singhee, Jiajing Wang, B. Calhoun, Rob A. Rutenbar
{"title":"Recursive Statistical Blockade: An Enhanced Technique for Rare Event Simulation with Application to SRAM Circuit Design","authors":"Amith Singhee, Jiajing Wang, B. Calhoun, Rob A. Rutenbar","doi":"10.1109/VLSI.2008.54","DOIUrl":null,"url":null,"abstract":"Circuit reliability under statistical process variation is an area of growing concern. For highly replicated circuits such as SRAMs and flip flops, a rare statistical event for one circuit may induce a not-so-rare system failure. The Statistical Blockade was proposed as a Monte Carlo technique that allows us to efficiently filter-to block-unwanted samples insufficiently rare in the tail distributions we seek. However, there are significant practical problems with the technique. In this work, we show common scenarios in SRAM design where these problems render Statistical Blockade ineffective. We then propose significant extensions to make Statistical Blockade practically usable in these common scenarios. We show speedups of 102+ over standard Statistical Blockade and 104+ over standard Monte Carlo, for an SRAM cell in an industrial 90 nm technology.","PeriodicalId":143886,"journal":{"name":"21st International Conference on VLSI Design (VLSID 2008)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"64","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"21st International Conference on VLSI Design (VLSID 2008)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSI.2008.54","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 64

Abstract

Circuit reliability under statistical process variation is an area of growing concern. For highly replicated circuits such as SRAMs and flip flops, a rare statistical event for one circuit may induce a not-so-rare system failure. The Statistical Blockade was proposed as a Monte Carlo technique that allows us to efficiently filter-to block-unwanted samples insufficiently rare in the tail distributions we seek. However, there are significant practical problems with the technique. In this work, we show common scenarios in SRAM design where these problems render Statistical Blockade ineffective. We then propose significant extensions to make Statistical Blockade practically usable in these common scenarios. We show speedups of 102+ over standard Statistical Blockade and 104+ over standard Monte Carlo, for an SRAM cell in an industrial 90 nm technology.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
递归统计阻塞:一种改进的稀有事件模拟技术及其在SRAM电路设计中的应用
统计过程变化下的电路可靠性是一个日益受到关注的领域。对于高度复制的电路,如sram和触发器,一个电路的罕见统计事件可能会导致不太罕见的系统故障。统计封锁是作为蒙特卡罗技术提出的,它允许我们有效地过滤-阻止在我们寻求的尾部分布中不够罕见的不需要的样本。然而,该技术存在重大的实际问题。在这项工作中,我们展示了SRAM设计中的常见场景,这些问题使统计封锁无效。然后,我们提出了重要的扩展,使统计封锁在这些常见场景中实际可用。我们展示了在工业90纳米技术下的SRAM单元的速度比标准统计封锁快102+,比标准蒙特卡罗快104+。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Memory Design and Advanced Semiconductor Technology A Robust Architecture for Flip-Flops Tolerant to Soft-Errors and Transients from Combinational Circuits IEEE Market-Oriented Standards Process and the EDA Industry Concurrent Multi-Dimensional Adaptation for Low-Power Operation in Wireless Devices MoCSYS: A Multi-Clock Hybrid Two-Layer Router Architecture and Integrated Topology Synthesis Framework for System-Level Design of FPGA Based On-Chip Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1