Synchrosqueezing Transform in Biomedical Applications: A mini review

Duygu Degirmenci, Melike Yalcin, Mehmet Akif Ozdemir, A. Akan
{"title":"Synchrosqueezing Transform in Biomedical Applications: A mini review","authors":"Duygu Degirmenci, Melike Yalcin, Mehmet Akif Ozdemir, A. Akan","doi":"10.1109/TIPTEKNO50054.2020.9299225","DOIUrl":null,"url":null,"abstract":"Time-frequency representation (TFR) provides a good analysis for periodic signals; however, they are insufficient for nonstationary signals. The synchrosqueezing transform (SST) provides a strong analysis of nonstationary signals. The signal has different synchrosqueezing transformations that are implemented using different TFR. This paper provides a review of the different SST methods implemented using different TFR available in the literature, a comparison of these, and their use with different techniques in biomedical signal processing applications. Adding different techniques to the applied SST method affects the signal processing and classification ability of the selected SST method.","PeriodicalId":426945,"journal":{"name":"2020 Medical Technologies Congress (TIPTEKNO)","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Medical Technologies Congress (TIPTEKNO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TIPTEKNO50054.2020.9299225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Time-frequency representation (TFR) provides a good analysis for periodic signals; however, they are insufficient for nonstationary signals. The synchrosqueezing transform (SST) provides a strong analysis of nonstationary signals. The signal has different synchrosqueezing transformations that are implemented using different TFR. This paper provides a review of the different SST methods implemented using different TFR available in the literature, a comparison of these, and their use with different techniques in biomedical signal processing applications. Adding different techniques to the applied SST method affects the signal processing and classification ability of the selected SST method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
同步压缩变换在生物医学中的应用综述
时频表示(TFR)对周期信号提供了很好的分析;然而,它们对于非平稳信号是不够的。同步压缩变换(SST)为非平稳信号的分析提供了强有力的手段。信号具有使用不同TFR实现的不同同步压缩变换。本文综述了文献中使用不同TFR实现的不同SST方法,并对这些方法进行了比较,以及它们与不同技术在生物医学信号处理应用中的应用。在已应用的海表温度方法中加入不同的技术会影响所选海表温度方法的信号处理和分类能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multiclass Classification of Brain Cancer with Machine Learning Algorithms Digital Filter Design Based on ARDUINO and Its Applications Use of Velocity Vectors for Cell Classification Under Acoustic Drifting Forces Development of a Full Face Mask during the COVID-19 Epidemic Spread Period TIPTEKNO 2020 Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1