Multi-task Solution for Aspect Category Sentiment Analysis on Vietnamese Datasets

Hoang-Quan Dang, Duc-Duy-Anh Nguyen, Trong-Hop Do
{"title":"Multi-task Solution for Aspect Category Sentiment Analysis on Vietnamese Datasets","authors":"Hoang-Quan Dang, Duc-Duy-Anh Nguyen, Trong-Hop Do","doi":"10.1109/CyberneticsCom55287.2022.9865479","DOIUrl":null,"url":null,"abstract":"In this article, we solved two tasks in the Vietnamese Aspect-based Sentiment Analysis problem: Aspect Category Detection (ACD) and Sentiment Polarity Classification (SPC). Besides, we proposed end-to-end models to handle the above tasks simultaneously for two domains (Restaurant and Hotel) in the VLSP 2018 Aspect-based Sentiment Analysis dataset using PhoBERT as Pre-trained language models for Vietnamese in two ways: Multi-task and Multi-task with Multi-branch approach. Both models give very good results when applied preprocessing. Specifically, the Multi-task model achieves state-of-the-art (SOTA) results in the Hotel domain of the VLSP 2018 ABSA dataset, with the F1-score being 82.55% for ACD and 77.32% for ACD with SPC. For the Restaurant domain, our Multi-task model also achieved SOTA in the ACD with SPC task by an F1-score of 71.55% and 83.29% for the ACD.","PeriodicalId":178279,"journal":{"name":"2022 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CyberneticsCom55287.2022.9865479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this article, we solved two tasks in the Vietnamese Aspect-based Sentiment Analysis problem: Aspect Category Detection (ACD) and Sentiment Polarity Classification (SPC). Besides, we proposed end-to-end models to handle the above tasks simultaneously for two domains (Restaurant and Hotel) in the VLSP 2018 Aspect-based Sentiment Analysis dataset using PhoBERT as Pre-trained language models for Vietnamese in two ways: Multi-task and Multi-task with Multi-branch approach. Both models give very good results when applied preprocessing. Specifically, the Multi-task model achieves state-of-the-art (SOTA) results in the Hotel domain of the VLSP 2018 ABSA dataset, with the F1-score being 82.55% for ACD and 77.32% for ACD with SPC. For the Restaurant domain, our Multi-task model also achieved SOTA in the ACD with SPC task by an F1-score of 71.55% and 83.29% for the ACD.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向越南语数据集的面向类情感分析多任务解决方案
在本文中,我们解决了越南语基于方面的情感分析问题中的两个任务:方面类别检测(ACD)和情感极性分类(SPC)。此外,我们提出了端到端模型来同时处理VLSP 2018基于方面的情感分析数据集中两个领域(餐厅和酒店)的上述任务,使用PhoBERT作为越南语的两种预训练语言模型:多任务和多分支的多任务方法。两种模型在进行预处理时都得到了很好的结果。具体来说,多任务模型在VLSP 2018 ABSA数据集的酒店领域实现了最先进(SOTA)的结果,其中ACD的f1得分为82.55%,ACD与SPC的得分为77.32%。对于餐厅领域,我们的多任务模型在具有SPC任务的ACD中也实现了SOTA,其中ACD的f1得分为71.55%,而ACD的f1得分为83.29%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Method of Electroencephalography Electrode Selection for Motor Imagery Application Aspect-based Sentiment Analysis for Improving Online Learning Program Based on Student Feedback Fuzzy Logic Control Strategy for Axial Flux Permanent Magnet Synchronous Generator in WHM 1.5KW Welcome Message from General Chair The 6th Cyberneticscom 2022 Performance Comparison of AODV, AODV-ETX and Modified AODV-ETX in VANET using NS3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1