Integrated Group Method of Data Handing Framework for Remaining Useful Life Prediction

Xin Ge, Shunjie Zhang, Q. Cheng, Xuejun Zhao, Yong Qin
{"title":"Integrated Group Method of Data Handing Framework for Remaining Useful Life Prediction","authors":"Xin Ge, Shunjie Zhang, Q. Cheng, Xuejun Zhao, Yong Qin","doi":"10.1109/SDPC.2019.00160","DOIUrl":null,"url":null,"abstract":"Considering the shortcomings of a single Group Method of Data Handling (GMDH) network that is easy to fall into local optimum, this paper proposes an integrated GMDH framework for Remaining Useful Life (RUL) prediction. The framework generates three GMDH networks through different division of training data, and integrates the results of the three GMDH networks with a three-layer back propagation (BP) neural network. The NASA C-MAPSS dataset is used to evaluate the effectiveness of the proposed methodˈ by comparison with the prediction results of a single GMDH network and Long Short-Term Memory (LSTM) network. The results show that the proposed method can effectively improve the generalization ability of the GMDH network and is superior to the LSTM in terms of root mean squared error (RMSE).","PeriodicalId":403595,"journal":{"name":"2019 International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC)","volume":"214 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SDPC.2019.00160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Considering the shortcomings of a single Group Method of Data Handling (GMDH) network that is easy to fall into local optimum, this paper proposes an integrated GMDH framework for Remaining Useful Life (RUL) prediction. The framework generates three GMDH networks through different division of training data, and integrates the results of the three GMDH networks with a three-layer back propagation (BP) neural network. The NASA C-MAPSS dataset is used to evaluate the effectiveness of the proposed methodˈ by comparison with the prediction results of a single GMDH network and Long Short-Term Memory (LSTM) network. The results show that the proposed method can effectively improve the generalization ability of the GMDH network and is superior to the LSTM in terms of root mean squared error (RMSE).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
剩余使用寿命预测数据处理框架的集成成组方法
针对单组数据处理方法(GMDH)网络容易陷入局部最优的缺点,提出了一种用于剩余使用寿命(RUL)预测的集成GMDH框架。该框架通过对训练数据的不同划分生成三个GMDH网络,并将三个GMDH网络的结果与一个三层BP神经网络进行整合。利用NASA C-MAPSS数据集,通过与单一GMDH网络和长短期记忆(LSTM)网络的预测结果进行比较,评估了所提方法的有效性。结果表明,该方法能有效提高GMDH网络的泛化能力,且在均方根误差(RMSE)方面优于LSTM。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Reliability Optimization Allocation Method of Control Rod Drive Mechanism Based on GO Method Lubrication Oil Degradation Trajectory Prognosis with ARIMA and Bayesian Models Algorithm for Measuring Attitude Angle of Intelligent Ammunition with Magnetometer/GNSS Estimation of Spectrum Envelope for Gear Motor Monitoring Using A Laser Doppler Velocimeter Reliability Optimization Allocation Method Based on Improved Dynamic Particle Swarm Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1