Handwritten document retrieval

Gregory F. Russell, M. Perrone, Yi-Min Chee, A. Ziq
{"title":"Handwritten document retrieval","authors":"Gregory F. Russell, M. Perrone, Yi-Min Chee, A. Ziq","doi":"10.1109/IWFHR.2002.1030915","DOIUrl":null,"url":null,"abstract":"This paper investigates the use of both typed and handwritten queries to retrieve handwritten documents. The recognition-based approach reported here is novel in that it expands documents in a fashion analogous to query expansion: Individual documents are expanded using N-best lists which embody additional statistical information from a hidden Markov model (HMM) based handwriting recognizer used to transcribe each of the handwritten documents. This additional information enables the retrieval methods to be robust to machine transcription errors, retrieving documents which otherwise would be unretrievable. Cross-writer experiments on a database of 10985 words in 108 documents from 108 writers, and within-writer experiments in a probabilistic framework, on a database of 537724 words in 3342 documents from 43 writers, indicate that significant improvements in retrieval performance can be achieved. The second database is the largest database of on-line handwritten documents known to its.","PeriodicalId":114017,"journal":{"name":"Proceedings Eighth International Workshop on Frontiers in Handwriting Recognition","volume":"26 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Eighth International Workshop on Frontiers in Handwriting Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWFHR.2002.1030915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

This paper investigates the use of both typed and handwritten queries to retrieve handwritten documents. The recognition-based approach reported here is novel in that it expands documents in a fashion analogous to query expansion: Individual documents are expanded using N-best lists which embody additional statistical information from a hidden Markov model (HMM) based handwriting recognizer used to transcribe each of the handwritten documents. This additional information enables the retrieval methods to be robust to machine transcription errors, retrieving documents which otherwise would be unretrievable. Cross-writer experiments on a database of 10985 words in 108 documents from 108 writers, and within-writer experiments in a probabilistic framework, on a database of 537724 words in 3342 documents from 43 writers, indicate that significant improvements in retrieval performance can be achieved. The second database is the largest database of on-line handwritten documents known to its.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
手写文档检索
本文研究了使用打字和手写查询来检索手写文档。这里报告的基于识别的方法是新颖的,因为它以类似于查询扩展的方式扩展文档:使用N-best列表扩展单个文档,其中包含来自用于转录每个手写文档的基于隐马尔可夫模型(HMM)的手写识别器的附加统计信息。这些额外的信息使检索方法对机器转录错误具有鲁棒性,检索否则无法检索的文档。在108位作者的108篇文档中的10985个单词的数据库上进行了跨作者实验,在概率框架下对43位作者的3342篇文档中的537724个单词的数据库进行了跨作者实验,结果表明检索性能得到了显著提高。第二个数据库是目前已知的最大的在线手写文档数据库。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bigram-based post-processing for online handwriting recognition using correctness evaluation The effect of large training set sizes on online Japanese Kanji and English cursive recognizers Analysis of stability in hand-written dynamic signatures Recognition of courtesy amounts on bank checks based on a segmentation approach Vind(x): using the user through cooperative annotation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1