Learning Based Adaptive Denoising Approach for Image Interpolation

Z. Gan, L. Qi, Xiuchang Zhu
{"title":"Learning Based Adaptive Denoising Approach for Image Interpolation","authors":"Z. Gan, L. Qi, Xiuchang Zhu","doi":"10.1109/ICIG.2011.89","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an effective image interpolation framework through learning based adaptive denoisng approach. In the local area, error pattern between original image and interpolated image is treated as stationary Gaussian distribution. Under the initial estimation, the proposed method apply the patch as the basic unit, in which Multiclass SVM classifier is used to determine iteration number and denoise parameters. There are two steps in iterative processing, including adaptive denoise and data fusion. Experiment results shown the proposed method can significantly improve the interpolated image quality both subjectively and objectively.","PeriodicalId":277974,"journal":{"name":"2011 Sixth International Conference on Image and Graphics","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Sixth International Conference on Image and Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIG.2011.89","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we propose an effective image interpolation framework through learning based adaptive denoisng approach. In the local area, error pattern between original image and interpolated image is treated as stationary Gaussian distribution. Under the initial estimation, the proposed method apply the patch as the basic unit, in which Multiclass SVM classifier is used to determine iteration number and denoise parameters. There are two steps in iterative processing, including adaptive denoise and data fusion. Experiment results shown the proposed method can significantly improve the interpolated image quality both subjectively and objectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于学习的图像插值自适应去噪方法
本文提出了一种基于学习的自适应去噪方法的有效图像插值框架。在局部区域,原始图像与插值图像之间的误差模式被视为平稳高斯分布。在初始估计下,该方法以patch为基本单元,利用Multiclass SVM分类器确定迭代次数和去噪参数。迭代处理分为自适应降噪和数据融合两步。实验结果表明,该方法在主观上和客观上都能显著提高插值后的图像质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust Face Recognition by Sparse Local Features from a Single Image under Occlusion LIDAR-based Long Range Road Intersection Detection A Novel Algorithm for Ship Detection Based on Dynamic Fusion Model of Multi-feature and Support Vector Machine Target Tracking Based on Wavelet Features in the Dynamic Image Sequence Visual Word Pairs for Similar Image Search
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1