Approximate ML detector for MIMO channels in unknown spatio-temporal colored noise with Kronecker product correlation

Stanislav D. Markus, E. A. Mavrychev
{"title":"Approximate ML detector for MIMO channels in unknown spatio-temporal colored noise with Kronecker product correlation","authors":"Stanislav D. Markus, E. A. Mavrychev","doi":"10.1109/ISWCS.2014.6933357","DOIUrl":null,"url":null,"abstract":"In this paper a new maximum likelihood (ML) based detector for multi-input multi-output (MIMO) channels in spatio-temporal colored noise fields is proposed. It is assumed a Kronecker model of spatio-temporal correlation of noise. Approximate ML (AML) detection algorithm of MIMO channels is considered for two cases: known noise correlation matrix and unknown noise correlation matrix. The ML decoder for the case of unknown correlation matrix is developed based on iterative procedure with successive estimation of symbols, spatial correlation matrix and temporal correlation matrix. The proposed method uses the Kronecker structure of spatio-temporal correlation matrix. Effectiveness of the proposed technique is confirmed by simulation results.","PeriodicalId":431852,"journal":{"name":"2014 11th International Symposium on Wireless Communications Systems (ISWCS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 11th International Symposium on Wireless Communications Systems (ISWCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISWCS.2014.6933357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper a new maximum likelihood (ML) based detector for multi-input multi-output (MIMO) channels in spatio-temporal colored noise fields is proposed. It is assumed a Kronecker model of spatio-temporal correlation of noise. Approximate ML (AML) detection algorithm of MIMO channels is considered for two cases: known noise correlation matrix and unknown noise correlation matrix. The ML decoder for the case of unknown correlation matrix is developed based on iterative procedure with successive estimation of symbols, spatial correlation matrix and temporal correlation matrix. The proposed method uses the Kronecker structure of spatio-temporal correlation matrix. Effectiveness of the proposed technique is confirmed by simulation results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Kronecker积相关的未知时空彩色噪声中MIMO信道的近似ML检测器
本文提出了一种新的基于极大似然的多输入多输出(MIMO)信道时空彩色噪声检测方法。假设噪声的时空相关性为Kronecker模型。针对已知噪声相关矩阵和未知噪声相关矩阵两种情况,研究了MIMO信道的近似ML (AML)检测算法。基于符号、空间相关矩阵和时间相关矩阵逐次估计的迭代过程,开发了未知相关矩阵的ML解码器。该方法采用时空相关矩阵的Kronecker结构。仿真结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
QoS aware pre-emption: A new proposition for LTE downlink schedulers Residual energy-based transmission schemes for event reporting wireless sensor networks Fast-convolution implementation of linear equalization based multiantenna detection schemes Inter-band carrier aggregation in heterogeneous networks: Design and assessment Efficient use of random neural networks for cognitive radio system in LTE-UL
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1