An intelligent train operation algorithm via gradient descent method and driver's experience

Jiateng Yin, Dewang Chen
{"title":"An intelligent train operation algorithm via gradient descent method and driver's experience","authors":"Jiateng Yin, Dewang Chen","doi":"10.1109/ICIRT.2013.6696267","DOIUrl":null,"url":null,"abstract":"Most existing train control methods aim to track the target velocity curve offline, which may cause the frequent shit of the controller output, reduced comfort of passengers and increased energy consumption etc. Different from the previous control strategies, this paper presents a new algorithm without using the model information and the offline target velocity curve. The new algorithm is a data-driven intelligent train operation (ITO) algorithm which uses driver's experience to obtain the control strategy and employs input-output data to online optimize by gradient descent method. The proposed algorithm is tested in a Matlab/Simulink simulation model using the actual data from Beijing subway Yizhuang line. Compared with Proportion-integral-derivative(PID), this algorithm is better with less energy consumption, higher comfort, and parking precision and it meets the dynamic adjustment of running time. Moreover, the results of the ITO algorithm look like driver's situation both on trajectory and operation mode conversion.","PeriodicalId":163655,"journal":{"name":"2013 IEEE International Conference on Intelligent Rail Transportation Proceedings","volume":"147 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Intelligent Rail Transportation Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIRT.2013.6696267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Most existing train control methods aim to track the target velocity curve offline, which may cause the frequent shit of the controller output, reduced comfort of passengers and increased energy consumption etc. Different from the previous control strategies, this paper presents a new algorithm without using the model information and the offline target velocity curve. The new algorithm is a data-driven intelligent train operation (ITO) algorithm which uses driver's experience to obtain the control strategy and employs input-output data to online optimize by gradient descent method. The proposed algorithm is tested in a Matlab/Simulink simulation model using the actual data from Beijing subway Yizhuang line. Compared with Proportion-integral-derivative(PID), this algorithm is better with less energy consumption, higher comfort, and parking precision and it meets the dynamic adjustment of running time. Moreover, the results of the ITO algorithm look like driver's situation both on trajectory and operation mode conversion.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于梯度下降法和驾驶员经验的智能列车运行算法
现有的列车控制方法大多以离线跟踪目标速度曲线为目标,这可能会导致控制器输出频繁拉屎,降低乘客舒适度,增加能耗等问题。与以往的控制策略不同,本文提出了一种不使用模型信息和离线目标速度曲线的新算法。该算法是一种数据驱动的列车智能运行(ITO)算法,利用驾驶员经验获取控制策略,利用输入输出数据采用梯度下降法进行在线优化。利用北京地铁亦庄线的实际数据,在Matlab/Simulink仿真模型中对该算法进行了验证。与比例-积分-导数(PID)算法相比,该算法具有能耗小、舒适性高、停车精度高等优点,并能满足运行时间的动态调节。此外,ITO算法的结果在轨迹和操作模式转换上都接近驾驶员的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An optimization approach for real-time headway control of railway traffic Design and introduction of high power transfer system for electrical vehicles Feature-based solution to harmonics interference on track circuit in electrified heavy haul railway Research and application of the BFM-STAMP hazard analysis method Railway interlocking process - Building a base for formal methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1