Yarn Unevenness Prediction using Generalized Regression Neural Network

Bao-Wei Zhang Bao-Wei Zhang, Lin Xu Bao-Wei Zhang, Yong-Hua Wang Lin Xu
{"title":"Yarn Unevenness Prediction using Generalized Regression Neural Network","authors":"Bao-Wei Zhang Bao-Wei Zhang, Lin Xu Bao-Wei Zhang, Yong-Hua Wang Lin Xu","doi":"10.53106/160792642023052403020","DOIUrl":null,"url":null,"abstract":"\n This study aimed to propose a method to predict yarn unevenness grounded on the generalized regression neural network and traditional neural network model to further improve the prediction accuracy. The yarn unevenness model was constructed. Under this model, a three-layer neural network, a four-layer neural network, a five-layer neural network, and a generalized regression neural network were designed. Finally, Python was used for training and simulation. The training parameters and the three network models data were made consistent to ensure the comparability of the results. The results showed that using the yarn unevenness model, the average relative error of the four-layer neural network to cut down 0.87% compared with that of the three-layer neural network. Compared with the five-layer neural network, the four-layer neural network performance was not much different, but the running speed was increased by 46.05%. Compared with the four-layer neural network, the average relative error of the generalized regression neural network was reduced by 0.57%, the mean square error was reduced by 0.98%, he root mean square error was reduced by 4.76%, and the running speed was increased by 74.70%.\n \n","PeriodicalId":442331,"journal":{"name":"網際網路技術學刊","volume":"215 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"網際網路技術學刊","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53106/160792642023052403020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study aimed to propose a method to predict yarn unevenness grounded on the generalized regression neural network and traditional neural network model to further improve the prediction accuracy. The yarn unevenness model was constructed. Under this model, a three-layer neural network, a four-layer neural network, a five-layer neural network, and a generalized regression neural network were designed. Finally, Python was used for training and simulation. The training parameters and the three network models data were made consistent to ensure the comparability of the results. The results showed that using the yarn unevenness model, the average relative error of the four-layer neural network to cut down 0.87% compared with that of the three-layer neural network. Compared with the five-layer neural network, the four-layer neural network performance was not much different, but the running speed was increased by 46.05%. Compared with the four-layer neural network, the average relative error of the generalized regression neural network was reduced by 0.57%, the mean square error was reduced by 0.98%, he root mean square error was reduced by 4.76%, and the running speed was increased by 74.70%.  
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于广义回归神经网络的纱线不匀预测
本研究旨在提出一种基于广义回归神经网络和传统神经网络模型的纱线不匀预测方法,以进一步提高纱线不匀的预测精度。建立了纱线不匀模型。在此模型下,设计了三层神经网络、四层神经网络、五层神经网络和广义回归神经网络。最后,使用Python进行训练和仿真。训练参数与三种网络模型数据保持一致,以保证结果的可比性。结果表明,利用纱线不匀度模型,四层神经网络的平均相对误差比三层神经网络的平均相对误差降低0.87%。与五层神经网络相比,四层神经网络性能差异不大,但运行速度提高了46.05%。与四层神经网络相比,广义回归神经网络的平均相对误差减小0.57%,均方误差减小0.98%,均方根误差减小4.76%,运行速度提高74.70%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Compact Depth Separable Convolutional Image Filter for Clinical Color Perception Test Hybrid Dynamic Analysis for Android Malware Protected by Anti-Analysis Techniques with DOOLDA An Improved SSD Model for Small Size Work-pieces Recognition in Automatic Production Line A Construction of Knowledge Graph for Semiconductor Industry Chain Based on Lattice-LSTM and PCNN Models Designing a Multi-Criteria Decision-Making Framework to Establish a Value Ranking System for the Quality Evaluation of Long-Term Care Services
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1