Big Data Conceptual Modelling in Cyber-Physical Systems

Ada Bagozi, D. Bianchini, V. D. Antonellis, Alessandro Marini, D. Ragazzi
{"title":"Big Data Conceptual Modelling in Cyber-Physical Systems","authors":"Ada Bagozi, D. Bianchini, V. D. Antonellis, Alessandro Marini, D. Ragazzi","doi":"10.18417/emisa.si.hcm.24","DOIUrl":null,"url":null,"abstract":"Management of large volumes of data, collected from modern Cyber-Physical Systems, is calling for models, tools and methods for data representation and exploration, in order to capture relevant properties of physical objects, and manage them in the cyber-space. In this context, the impact of big data disruptive characteristics (namely, volume, velocity and variety) on data modelling and information systems designneeds further investigation. In particular, data exploration is assuming an ever growing relevance, being a way users/operators can learn from data by inspecting it according to different perspectives. In this paper, we use conceptual modelling for (big) data exploration in a dynamic context of interconnected systems. We rely on a multi-dimensional model, that is suited for properly providing data organization for exploration. Furthermore, we propose a model-driven approach that guides the design of multiple exploration strategies according to different objectives. The model-driven approach exploits a model of relevance, aimed at focusing the attention of the users/operators only on relevant data that are being explored. We describe the instantiation of the proposed concepts through some scenarios in the smart factory context, in order to show how conceptual modelling helps abstracting from implementation details and focusing on semantics of explored data.","PeriodicalId":186216,"journal":{"name":"Enterp. Model. Inf. Syst. Archit. Int. J. Concept. Model.","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Enterp. Model. Inf. Syst. Archit. Int. J. Concept. Model.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18417/emisa.si.hcm.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Management of large volumes of data, collected from modern Cyber-Physical Systems, is calling for models, tools and methods for data representation and exploration, in order to capture relevant properties of physical objects, and manage them in the cyber-space. In this context, the impact of big data disruptive characteristics (namely, volume, velocity and variety) on data modelling and information systems designneeds further investigation. In particular, data exploration is assuming an ever growing relevance, being a way users/operators can learn from data by inspecting it according to different perspectives. In this paper, we use conceptual modelling for (big) data exploration in a dynamic context of interconnected systems. We rely on a multi-dimensional model, that is suited for properly providing data organization for exploration. Furthermore, we propose a model-driven approach that guides the design of multiple exploration strategies according to different objectives. The model-driven approach exploits a model of relevance, aimed at focusing the attention of the users/operators only on relevant data that are being explored. We describe the instantiation of the proposed concepts through some scenarios in the smart factory context, in order to show how conceptual modelling helps abstracting from implementation details and focusing on semantics of explored data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
信息物理系统中的大数据概念建模
从现代网络物理系统中收集的大量数据的管理需要数据表示和探索的模型、工具和方法,以便捕获物理对象的相关属性,并在网络空间中对其进行管理。在此背景下,大数据颠覆性特征(即数量、速度和种类)对数据建模和信息系统设计的影响需要进一步研究。特别是,数据探索的相关性越来越大,用户/运营商可以通过从不同的角度检查数据来学习数据。在本文中,我们在互联系统的动态背景下使用概念建模进行(大)数据探索。我们依赖于多维模型,它适合于为探索提供适当的数据组织。此外,我们提出了一种模型驱动的方法,根据不同的目标指导多种勘探策略的设计。模型驱动的方法利用相关性模型,旨在将用户/操作员的注意力集中在正在探索的相关数据上。我们通过智能工厂环境中的一些场景描述了所提出概念的实例化,以展示概念建模如何帮助从实现细节中抽象出来,并关注所探索数据的语义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Catchword: Blockchains and Enterprise Modeling Decentralized Business Process Control using Blockchain An experience report from two applications: Food Supply Chain and Car Registration Balancing Patient Care and Paperwork Automatic Task Enactment and Comprehensive Documentation in Treatment Processes Process Modeling in Decentralized Organizations Utilizing Blockchain Consensus Blockchain Technologies in Enterprise Modeling and Enterprise Information Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1