S. Gnatyuk, Vasyl Kinzeryavyy, Yuliia Polishchuk, O. Nechyporuk, Bohdan Horbakha
{"title":"ANALYSIS OF METHODS FOR DATA CONFIDENTIALITY ENSURING DURING TRANSMITTING FROM UAV","authors":"S. Gnatyuk, Vasyl Kinzeryavyy, Yuliia Polishchuk, O. Nechyporuk, Bohdan Horbakha","doi":"10.28925/2663-4023.2022.17.167186","DOIUrl":null,"url":null,"abstract":"The rapid development of unmanned aerial vehicles (UAVs), as well as the expansion of the list of actions performed by modern UAVs, led to increased requirements for the safety and reliability of data transmission. In the context of warfare, when confidential information is collected, the protection of such information is a top priority. The practical level of conducting aerial reconnaissance during current warfare demonstrates the urgent need to create UAV which capable of performing flight tasks and aerial reconnaissance in the mode of installed radio interference, and also emphasizes the importance of ensuring the data confidentiality about target objects transmitted by an optical channel for the implementation of their processing in automated systems. The paper provides a review and comparative analysis of modern cryptoalgorithms that are used to ensure data confidentiality during their transmission by radio channel from UAV to ground objects. There are the system of criteria (multi criteria analysis) was used to compare following cryptographic algorithms (similar to AES, NESSIE, etc competitions): block and key sizes; modes of operation; encryption speed; memory requirements; resistance (security) to cryptanalysis. The conducted analysis showed that each cryptographic algorithm has advantages and disadvantages. Also, there is no universal cryptographic algorithm that capable to resolve all privacy problems in UAV. According to the limited resources in the process of UAV operation, it is necessary to create a universal set (dataset) of cryptographic algorithms that could solve various problems in different conditions including different aspects of UAV exploitation. It is these studies that will be devoted to the further work of the authors within the framework of the ongoing scientific project.","PeriodicalId":198390,"journal":{"name":"Cybersecurity: Education, Science, Technique","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cybersecurity: Education, Science, Technique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28925/2663-4023.2022.17.167186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The rapid development of unmanned aerial vehicles (UAVs), as well as the expansion of the list of actions performed by modern UAVs, led to increased requirements for the safety and reliability of data transmission. In the context of warfare, when confidential information is collected, the protection of such information is a top priority. The practical level of conducting aerial reconnaissance during current warfare demonstrates the urgent need to create UAV which capable of performing flight tasks and aerial reconnaissance in the mode of installed radio interference, and also emphasizes the importance of ensuring the data confidentiality about target objects transmitted by an optical channel for the implementation of their processing in automated systems. The paper provides a review and comparative analysis of modern cryptoalgorithms that are used to ensure data confidentiality during their transmission by radio channel from UAV to ground objects. There are the system of criteria (multi criteria analysis) was used to compare following cryptographic algorithms (similar to AES, NESSIE, etc competitions): block and key sizes; modes of operation; encryption speed; memory requirements; resistance (security) to cryptanalysis. The conducted analysis showed that each cryptographic algorithm has advantages and disadvantages. Also, there is no universal cryptographic algorithm that capable to resolve all privacy problems in UAV. According to the limited resources in the process of UAV operation, it is necessary to create a universal set (dataset) of cryptographic algorithms that could solve various problems in different conditions including different aspects of UAV exploitation. It is these studies that will be devoted to the further work of the authors within the framework of the ongoing scientific project.