An object tracking method using deep learning and adaptive particle filter for night fusion image

Xiaoyan Qian, Lei Han, Yanlin Zhang, M. Ding
{"title":"An object tracking method using deep learning and adaptive particle filter for night fusion image","authors":"Xiaoyan Qian, Lei Han, Yanlin Zhang, M. Ding","doi":"10.1109/PIC.2017.8359530","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an online visual tracking algorithm for fused sequences via deep learning and adaptive Particle filter (PF). Our algorithm pretrains a simplified Convolution Neural Network (CNN) to obtain a generic target representation. The outputs from the hidden layers of the network help to form the tracking model for an online PF. During tracking, the moving information guides the distribution of particle samples. The tests illustrate competitive performance compared to the state-of-art tracking algorithms especially when the target or camera moves quickly.","PeriodicalId":370588,"journal":{"name":"2017 International Conference on Progress in Informatics and Computing (PIC)","volume":"48 50","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Progress in Informatics and Computing (PIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIC.2017.8359530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, we propose an online visual tracking algorithm for fused sequences via deep learning and adaptive Particle filter (PF). Our algorithm pretrains a simplified Convolution Neural Network (CNN) to obtain a generic target representation. The outputs from the hidden layers of the network help to form the tracking model for an online PF. During tracking, the moving information guides the distribution of particle samples. The tests illustrate competitive performance compared to the state-of-art tracking algorithms especially when the target or camera moves quickly.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习和自适应粒子滤波的夜间融合图像目标跟踪方法
本文提出了一种基于深度学习和自适应粒子滤波的融合序列在线视觉跟踪算法。我们的算法预训练了一个简化的卷积神经网络(CNN)来获得一个通用的目标表示。网络隐藏层的输出帮助形成在线PF的跟踪模型,在跟踪过程中,运动信息引导粒子样本的分布。这些测试表明,与最先进的跟踪算法相比,特别是在目标或摄像机快速移动时,该算法的性能具有竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluation method and decision support of network education based on association rules ACER: An adaptive context-aware ensemble regression model for airfare price prediction An improved constraint model for team tactical position selection in games Trust your wallet: A new online wallet architecture for Bitcoin An approach based on decision tree for analysis of behavior with combined cycle power plant
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1