Estimation of Stochastic Volatility Models with Heavy Tails and Serial Dependence

J. Chan, C. Hsiao
{"title":"Estimation of Stochastic Volatility Models with Heavy Tails and Serial Dependence","authors":"J. Chan, C. Hsiao","doi":"10.2139/ssrn.2359838","DOIUrl":null,"url":null,"abstract":"Financial time series often exhibit properties that depart from the usual assumptions of serial independence and normality. These include volatility clustering, heavy-tailedness and serial dependence. A voluminous literature on different approaches for modeling these empirical regularities has emerged in the last decade. In this paper we review the estimation of a variety of highly flexible stochastic volatility models, and introduce some efficient algorithms based on recent advances in state space simulation techniques. These estimation methods are illustrated via empirical examples involving precious metal and foreign exchange returns. The corresponding Matlab code is also provided.","PeriodicalId":273058,"journal":{"name":"ERN: Model Construction & Estimation (Topic)","volume":"139 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"67","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Model Construction & Estimation (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2359838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 67

Abstract

Financial time series often exhibit properties that depart from the usual assumptions of serial independence and normality. These include volatility clustering, heavy-tailedness and serial dependence. A voluminous literature on different approaches for modeling these empirical regularities has emerged in the last decade. In this paper we review the estimation of a variety of highly flexible stochastic volatility models, and introduce some efficient algorithms based on recent advances in state space simulation techniques. These estimation methods are illustrated via empirical examples involving precious metal and foreign exchange returns. The corresponding Matlab code is also provided.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有重尾和序列依赖的随机波动率模型的估计
金融时间序列通常表现出与序列独立性和正态性的通常假设不同的特性。这包括波动性聚类、重尾性和序列依赖性。在过去十年中出现了大量关于模拟这些经验规律的不同方法的文献。在本文中,我们回顾了各种高度灵活的随机波动模型的估计,并介绍了一些基于状态空间模拟技术最新进展的有效算法。这些估计方法通过涉及贵金属和外汇收益的经验例子加以说明。并提供了相应的Matlab代码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nonparametric Tests of Conditional Independence for Time Series Estimating Demand with Multi-Homing in Two-Sided Markets Does Court Type, Size and Employee Satisfaction Affect Court Speed?. Hierarchical Linear Modelling With Evidence from Kenya Development of Estimation and Forecasting Method in Intelligent Decision Support Systems Estimating Financial Networks by Realized Interdependencies: A Restricted Autoregressive Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1