Hardware-in-Loop Implementation of ANN Based Differential Protection of Transformer

P. Thote, M. Daigavane, P. Daigavane, S. Kamble, Chandrakant Rathore
{"title":"Hardware-in-Loop Implementation of ANN Based Differential Protection of Transformer","authors":"P. Thote, M. Daigavane, P. Daigavane, S. Kamble, Chandrakant Rathore","doi":"10.1109/wiecon-ece.2017.8468899","DOIUrl":null,"url":null,"abstract":"This paper presents an efficient Artificial Neural Network (ANN) approach for discriminating the internal faults from the non-internal faults in a transformer. The wavelet transform is a powerful tool for analyzing transient conditions because of its ability to extract information both in time and frequency domain simultaneously. Simulation of the differential protection scheme of a transformer to obtain various operating conditions is done using MATLAB/SIMULINK taking 1 cycle of data window (20 msec.). Different operating conditions such as normal, internal fault, external fault, switching inrush, and over fluxing are analyzed and processed to obtain certain statistical parameters of wavelet coefficients at the different decomposition levels. Authors have used Arduino Uno ATmega328P platform for hardware implementation of ANN architecture. Results indicate that overall classification accuracy is found to be 95.63 %.","PeriodicalId":188031,"journal":{"name":"2017 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/wiecon-ece.2017.8468899","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper presents an efficient Artificial Neural Network (ANN) approach for discriminating the internal faults from the non-internal faults in a transformer. The wavelet transform is a powerful tool for analyzing transient conditions because of its ability to extract information both in time and frequency domain simultaneously. Simulation of the differential protection scheme of a transformer to obtain various operating conditions is done using MATLAB/SIMULINK taking 1 cycle of data window (20 msec.). Different operating conditions such as normal, internal fault, external fault, switching inrush, and over fluxing are analyzed and processed to obtain certain statistical parameters of wavelet coefficients at the different decomposition levels. Authors have used Arduino Uno ATmega328P platform for hardware implementation of ANN architecture. Results indicate that overall classification accuracy is found to be 95.63 %.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于人工神经网络的变压器差动保护的硬件在环实现
提出了一种基于人工神经网络的变压器内部故障与非内部故障判别方法。小波变换能够同时提取时域和频域信息,是分析暂态状态的有力工具。利用MATLAB/SIMULINK以1个周期的数据窗口(20毫秒)对变压器的差动保护方案进行仿真,以获得各种工况。对正常、内部故障、外部故障、开关涌流、过磁通等不同工况进行分析处理,得到不同分解层次上小波系数的一定统计参数。作者利用Arduino Uno ATmega328P平台对人工神经网络架构进行了硬件实现。结果表明,该方法的总体分类准确率为95.63%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Price Aware Residential Demand Response With Renewable Sources and Electric Vehicle Enhanced Power Generation from Piezoelectric System under Partial Vibration Condition Implementation of ABC Algorithm To Solve Simultaneous Substation Expansion And Transmission Expansion Planning Optimal PMU Placement for Complete Power System Observability under (P–1) Contingency Nanotechnology-Based Efficient Fault Tolerant Decoder in Reversible Logic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1