Branch prediction on demand: an energy-efficient solution [microprocessor architecture]

D. Chaver, L. Piñuel, M. Prieto, F. Tirado, M. Huang
{"title":"Branch prediction on demand: an energy-efficient solution [microprocessor architecture]","authors":"D. Chaver, L. Piñuel, M. Prieto, F. Tirado, M. Huang","doi":"10.1109/LPE.2003.1231933","DOIUrl":null,"url":null,"abstract":"High-end processors typically incorporate complex branch predictors consisting of many large structures that together consume a notable fraction of total chip power (more than 10% in some cases). Depending on the applications, some of these resources may remain underused for long periods of time. We propose a methodology to reduce the energy consumption of the branch predictor by characterizing prediction demand using profiling and dynamically adjusting predictor resources accordingly. Specifically, we disable components of the hybrid direction predictor and resize the branch target buffer. Detailed simulations show that this approach reduces the energy consumption in the branch predictor by an average of 72% and up to 89% with virtually no impact on prediction accuracy and performance.","PeriodicalId":355883,"journal":{"name":"Proceedings of the 2003 International Symposium on Low Power Electronics and Design, 2003. ISLPED '03.","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2003 International Symposium on Low Power Electronics and Design, 2003. ISLPED '03.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LPE.2003.1231933","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

High-end processors typically incorporate complex branch predictors consisting of many large structures that together consume a notable fraction of total chip power (more than 10% in some cases). Depending on the applications, some of these resources may remain underused for long periods of time. We propose a methodology to reduce the energy consumption of the branch predictor by characterizing prediction demand using profiling and dynamically adjusting predictor resources accordingly. Specifically, we disable components of the hybrid direction predictor and resize the branch target buffer. Detailed simulations show that this approach reduces the energy consumption in the branch predictor by an average of 72% and up to 89% with virtually no impact on prediction accuracy and performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
按需分支预测:一种节能解决方案[微处理器架构]
高端处理器通常包含复杂的分支预测器,这些分支预测器由许多大型结构组成,这些结构加在一起消耗了芯片总功耗的很大一部分(在某些情况下超过10%)。根据应用程序的不同,其中一些资源可能在很长一段时间内未得到充分利用。本文提出了一种减少分支预测器能耗的方法,该方法通过分析来表征预测需求,并相应地动态调整预测器资源。具体来说,我们禁用了混合方向预测器的组件,并调整了分支目标缓冲区的大小。详细的模拟表明,这种方法将分支预测器的能耗平均降低了72%,最高可达89%,而对预测精度和性能几乎没有影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Voltage scheduling under unpredictabilities: a risk management paradigm [logic design] Uncertainty-based scheduling: energy-efficient ordering for tasks with variable execution time [processor scheduling] Level conversion for dual-supply systems [low power logic IC design] A selective filter-bank TLB system [embedded processor MMU for low power] A semi-custom voltage-island technique and its application to high-speed serial links [CMOS active power reduction]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1