Phone-to-word decoding through statistical machine translation and complementary system combination

D. Falavigna, M. Gerosa, R. Gretter, D. Giuliani
{"title":"Phone-to-word decoding through statistical machine translation and complementary system combination","authors":"D. Falavigna, M. Gerosa, R. Gretter, D. Giuliani","doi":"10.1109/ASRU.2009.5373281","DOIUrl":null,"url":null,"abstract":"In this paper, phone-to-word transduction is first investigated by coupling a speech recognizer, generating for each speech segment a phone sequence or a phone confusion network, with the efficient decoder of confusion networks adopted by MOSES, a popular statistical machine translation toolkit. Then, system combination is investigated by combining the outputs of several conventional ASR systems with the output of a system embedding phone-to-word decoding through statistical machine translation. Experiments are carried out in the context of a large vocabulary speech recognition task consisting of transcription of speeches delivered in English during the European Parliament Plenary Sessions (EPPS). While only a marginal performance improvements is achieved in system combination experiments when the output of the phone-to-word transducer is included in the combination, partial results show a great potential for improvements.","PeriodicalId":292194,"journal":{"name":"2009 IEEE Workshop on Automatic Speech Recognition & Understanding","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Workshop on Automatic Speech Recognition & Understanding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2009.5373281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, phone-to-word transduction is first investigated by coupling a speech recognizer, generating for each speech segment a phone sequence or a phone confusion network, with the efficient decoder of confusion networks adopted by MOSES, a popular statistical machine translation toolkit. Then, system combination is investigated by combining the outputs of several conventional ASR systems with the output of a system embedding phone-to-word decoding through statistical machine translation. Experiments are carried out in the context of a large vocabulary speech recognition task consisting of transcription of speeches delivered in English during the European Parliament Plenary Sessions (EPPS). While only a marginal performance improvements is achieved in system combination experiments when the output of the phone-to-word transducer is included in the combination, partial results show a great potential for improvements.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过统计机器翻译和互补系统相结合实现电话到文字的译码
本文首先通过将语音识别器(为每个语音段生成电话序列或电话混淆网络)与流行的统计机器翻译工具包MOSES采用的高效混淆网络解码器耦合在一起,研究了电话到单词的转导。然后,将几个传统ASR系统的输出与一个通过统计机器翻译嵌入电话到单词解码的系统的输出相结合,研究了系统组合。实验是在一个大词汇量的语音识别任务的背景下进行的,该任务包括在欧洲议会全体会议(EPPS)期间用英语发表的演讲的转录。虽然在系统组合实验中,当包含电话到单词换能器的输出时,仅实现了边际性能改进,但部分结果显示出巨大的改进潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detection of OOV words by combining acoustic confidence measures with linguistic features Automatic translation from parallel speech: Simultaneous interpretation as MT training data Local and global models for spontaneous speech segment detection and characterization Automatic punctuation generation for speech Response timing generation and response type selection for a spontaneous spoken dialog system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1