Optimization of Fuzzy C-Means Clustering by Genetic Algorithms Based on Sizable Chromosome

Jie-sheng Wang, Xian-wen Gao
{"title":"Optimization of Fuzzy C-Means Clustering by Genetic Algorithms Based on Sizable Chromosome","authors":"Jie-sheng Wang, Xian-wen Gao","doi":"10.1109/CCPR.2009.5344155","DOIUrl":null,"url":null,"abstract":"Aiming at the predifined clustering number, strong randomness and easiness to fall into local optimum , a new self-adaptive FCM algorithm based on genetic algorithm is proposed. The number of fuzzy clustering and cluster centers are optimized by sizable-chromosome genetic algorithms (SC-GAs). Cut operator and splice operator are adopted to combination the chromosome to form new individuals. Non-uniform mutation operator is used to enhance the population diversity. The new proposed method can obtain the global optimam compared to standard FCM algorithm. The simulation experimental result s with IRIS demonstrate the feasibility and effectiveness of the new algorithm.","PeriodicalId":354468,"journal":{"name":"2009 Chinese Conference on Pattern Recognition","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Chinese Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCPR.2009.5344155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Aiming at the predifined clustering number, strong randomness and easiness to fall into local optimum , a new self-adaptive FCM algorithm based on genetic algorithm is proposed. The number of fuzzy clustering and cluster centers are optimized by sizable-chromosome genetic algorithms (SC-GAs). Cut operator and splice operator are adopted to combination the chromosome to form new individuals. Non-uniform mutation operator is used to enhance the population diversity. The new proposed method can obtain the global optimam compared to standard FCM algorithm. The simulation experimental result s with IRIS demonstrate the feasibility and effectiveness of the new algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于可观染色体遗传算法的模糊c均值聚类优化
针对聚类数预定义、随机性强、易陷入局部最优的特点,提出了一种基于遗传算法的自适应FCM算法。采用大小染色体遗传算法(SC-GAs)优化模糊聚类个数和聚类中心数。采用剪切算子和剪接算子对染色体进行组合,形成新的个体。采用非均匀变异算子增强种群多样性。与标准FCM算法相比,该方法可以获得全局最优。IRIS的仿真实验结果验证了新算法的可行性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Motion Detection Based on Directional Rectangular Pattern and Adaptive Threshold Propagation in the Complex Background An Algorithm for Ellipse Detection Based on Geometry Color Image Segmentation Using Combined Information of Color and Texture Use Fukunaga-Koontz Transform to Solve Occlusion Problems in Multitarget Tracking A Discretization Algorithm of Continuous Attributes Based on Supervised Clustering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1