Optical Artificial Intelligence Based on Semantic Network Architecture

T. Yatagai
{"title":"Optical Artificial Intelligence Based on Semantic Network Architecture","authors":"T. Yatagai","doi":"10.1364/optcomp.1989.mc1","DOIUrl":null,"url":null,"abstract":"In symbolic processing, associative network approaches show promise for solving difficult artificial intelligence problems. [1,2] Optical associative networks, including holographic[3,4] and matrix-vector multiplication [5] architectures, are one of the most attractive approaches toward large-scale associative processing. Optics provides both 2-D parallel interconnection ability between modules and parallel-computing mechanisms for parallel association algorithm. A hybrid optical inference architecture has been proposed. [6] Recently optical architectures for learning and self-organizing neural network are discussed.[7,8]","PeriodicalId":302010,"journal":{"name":"Optical Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/optcomp.1989.mc1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In symbolic processing, associative network approaches show promise for solving difficult artificial intelligence problems. [1,2] Optical associative networks, including holographic[3,4] and matrix-vector multiplication [5] architectures, are one of the most attractive approaches toward large-scale associative processing. Optics provides both 2-D parallel interconnection ability between modules and parallel-computing mechanisms for parallel association algorithm. A hybrid optical inference architecture has been proposed. [6] Recently optical architectures for learning and self-organizing neural network are discussed.[7,8]
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于语义网络架构的光学人工智能
在符号处理中,联想网络方法有望解决复杂的人工智能问题。[1,2]光学关联网络,包括全息[3,4]和矩阵向量乘法[5]架构,是大规模关联处理中最具吸引力的方法之一。光学为并行关联算法提供了模块间二维并行互连能力和并行计算机制。提出了一种混合光推理体系结构。[6]近年来,人们讨论了学习和自组织神经网络的光学结构[7,8]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optical Interconnections Parallel Computing Optical Circuits Volume Holographic Storage and Retrieval of Digital Information Adaptive Beam-Steering and Jammer-Nulling Photorefractive Phased-Array Radar Processor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1