mCardia: A Context-Aware ECG Collection System for Ambulatory Arrhythmia Screening

Devender Kumar, Raju Maharjan, Alban Maxhuni, Helena Domínguez, A. Frølich, J. Bardram
{"title":"mCardia: A Context-Aware ECG Collection System for Ambulatory Arrhythmia Screening","authors":"Devender Kumar, Raju Maharjan, Alban Maxhuni, Helena Domínguez, A. Frølich, J. Bardram","doi":"10.1145/3494581","DOIUrl":null,"url":null,"abstract":"This article presents the design, technical implementation, and feasibility evaluation of mCardia—a context-aware, mobile electrocardiogram (ECG) collection system for longitudinal arrhythmia screening under free-living conditions. Along with ECG, mCardia also records active and passive contextual data, including patient-reported symptoms and physical activity. This contextual data can provide a more accurate understanding of what happens before, during, and after an arrhythmia event, thereby providing additional information in the diagnosis of arrhythmia. By using a plugin-based architecture for ECG and contextual sensing, mCardia is device-agnostic and can integrate with various wireless ECG devices and supports cross-platform deployment. We deployed the mCardia system in a feasibility study involving 24 patients who used the system over a two-week period. During the study, we observed high patient acceptance and compliance with a satisfactory yield of collected ECG and contextual data. The results demonstrate the high usability and feasibility of mCardia for longitudinal ambulatory monitoring under free-living conditions. The article also reports from two clinical cases, which demonstrate how a cardiologist can utilize the collected contextual data to improve the accuracy of arrhythmia analysis. Finally, the article discusses the lessons learned and the challenges found in the mCardia design and the feasibility study.","PeriodicalId":288903,"journal":{"name":"ACM Transactions on Computing for Healthcare (HEALTH)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Computing for Healthcare (HEALTH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3494581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This article presents the design, technical implementation, and feasibility evaluation of mCardia—a context-aware, mobile electrocardiogram (ECG) collection system for longitudinal arrhythmia screening under free-living conditions. Along with ECG, mCardia also records active and passive contextual data, including patient-reported symptoms and physical activity. This contextual data can provide a more accurate understanding of what happens before, during, and after an arrhythmia event, thereby providing additional information in the diagnosis of arrhythmia. By using a plugin-based architecture for ECG and contextual sensing, mCardia is device-agnostic and can integrate with various wireless ECG devices and supports cross-platform deployment. We deployed the mCardia system in a feasibility study involving 24 patients who used the system over a two-week period. During the study, we observed high patient acceptance and compliance with a satisfactory yield of collected ECG and contextual data. The results demonstrate the high usability and feasibility of mCardia for longitudinal ambulatory monitoring under free-living conditions. The article also reports from two clinical cases, which demonstrate how a cardiologist can utilize the collected contextual data to improve the accuracy of arrhythmia analysis. Finally, the article discusses the lessons learned and the challenges found in the mCardia design and the feasibility study.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
mccardia:动态心律失常筛查的上下文感知ECG收集系统
本文介绍了mcardia的设计、技术实现和可行性评估——一种在自由生活条件下用于纵向心律失常筛查的情境感知移动心电图(ECG)收集系统。除了ECG, mCardia还记录主动和被动的背景数据,包括患者报告的症状和身体活动。这些上下文数据可以更准确地了解心律失常事件发生之前、期间和之后发生的情况,从而为心律失常的诊断提供额外的信息。通过使用基于插件的ECG和上下文感知架构,mccardia与设备无关,可以与各种无线ECG设备集成,并支持跨平台部署。我们在一项可行性研究中部署了mCardia系统,涉及24名使用该系统超过两周的患者。在研究期间,我们观察到患者对所收集的心电图和相关数据的接受度和依从性很高。结果表明,mCardia在自由生活条件下进行纵向动态监测具有较高的可用性和可行性。本文还报道了两个临床病例,这表明心脏病专家如何利用收集的上下文数据来提高心律失常分析的准确性。最后,文章讨论了mccardia设计和可行性研究的经验教训和面临的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Introduction to the Special Issue on Internet-of-Medical-Things iNAP: A Hybrid Approach for NonInvasive Anemia-Polycythemia Detection in the IoMT Improving Early Prognosis of Dementia Using Machine Learning Methods Pervasive Pose Estimation for Fall Detection Automatic Extraction of Nested Entities in Clinical Referrals in Spanish
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1