Image segmentation and object recognition by Bayesian grouping

S. Kalitzin, J. Staal, B. H. Romeny, M. Viergever
{"title":"Image segmentation and object recognition by Bayesian grouping","authors":"S. Kalitzin, J. Staal, B. H. Romeny, M. Viergever","doi":"10.1109/ICIP.2000.899518","DOIUrl":null,"url":null,"abstract":"We propose a Bayesian grouping approach for recognition and segmentation of large-scale structures representing objects in images. It is based on detection of local image properties, extraction of simple geometrical primitives, and grouping these primitives according to probability rules and prior models. As opposed to the various template matching techniques, our method does not rely on a fixed set of input data to generate the prior with a maximum likelihood. Instead, it selects a list of subsets of the local primitives and finds the optimum set of model priors that maximizes the likelihood of the model samples representing the selected subsets. In contrast with global recognition methods that classify the whole image, our approach aims at solving the recognition task together with the segmentation task. As an illustration we give a medical data example of feature grouping in 2D images involving vessel detection from local ridges.","PeriodicalId":193198,"journal":{"name":"Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2000.899518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We propose a Bayesian grouping approach for recognition and segmentation of large-scale structures representing objects in images. It is based on detection of local image properties, extraction of simple geometrical primitives, and grouping these primitives according to probability rules and prior models. As opposed to the various template matching techniques, our method does not rely on a fixed set of input data to generate the prior with a maximum likelihood. Instead, it selects a list of subsets of the local primitives and finds the optimum set of model priors that maximizes the likelihood of the model samples representing the selected subsets. In contrast with global recognition methods that classify the whole image, our approach aims at solving the recognition task together with the segmentation task. As an illustration we give a medical data example of feature grouping in 2D images involving vessel detection from local ridges.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于贝叶斯分组的图像分割与目标识别
我们提出了一种贝叶斯分组方法来识别和分割图像中代表物体的大尺度结构。它基于局部图像属性的检测,简单几何基元的提取,并根据概率规则和先验模型对这些基元进行分组。与各种模板匹配技术相反,我们的方法不依赖于一组固定的输入数据来生成具有最大似然的先验。相反,它选择局部原语的子集列表,并找到最优的模型先验集,该模型先验集最大限度地提高了代表所选子集的模型样本的可能性。与对整个图像进行分类的全局识别方法不同,我们的方法旨在将识别任务与分割任务结合起来解决。为了说明这一点,我们给出了一个二维图像特征分组的医学数据示例,其中包括从局部脊线检测血管。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust shape tracking in the presence of cluttered background Symmetric region growing Joint halftoning and watermarking A deformable template model based on fuzzy alignment algorithm Region-based scanning for image compression
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1