A New Deep Architecture for Digital Signal Modulation Classification over Rician Fading

Peicong Hu, Wendong Yang, Na Pu, Yunfei Peng, Xiang Ding
{"title":"A New Deep Architecture for Digital Signal Modulation Classification over Rician Fading","authors":"Peicong Hu, Wendong Yang, Na Pu, Yunfei Peng, Xiang Ding","doi":"10.1109/ICCCS52626.2021.9449146","DOIUrl":null,"url":null,"abstract":"In this paper, we simulate digital signals of six usual modulation patterns considering Rician fading and propose a new deep neural network structure (CGDNN) combining Convolutional Neural Networks (CNNs) with Gated Recurrent Unit (GRU). Simulation results show that the proposed structure has the ability to classify the signal modulation patterns regardless the influence of different Rician K-factors and has better performance than conventional structures including CNNs and CLDNNs.","PeriodicalId":376290,"journal":{"name":"2021 IEEE 6th International Conference on Computer and Communication Systems (ICCCS)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 6th International Conference on Computer and Communication Systems (ICCCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCS52626.2021.9449146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we simulate digital signals of six usual modulation patterns considering Rician fading and propose a new deep neural network structure (CGDNN) combining Convolutional Neural Networks (CNNs) with Gated Recurrent Unit (GRU). Simulation results show that the proposed structure has the ability to classify the signal modulation patterns regardless the influence of different Rician K-factors and has better performance than conventional structures including CNNs and CLDNNs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种新的数字信号调制衰落深度分类体系
在本文中,我们模拟了六种常见调制模式的数字信号,并考虑了梯度衰落,提出了一种将卷积神经网络(cnn)与门控循环单元(GRU)相结合的新型深度神经网络结构(CGDNN)。仿真结果表明,该结构具有对信号调制模式进行分类的能力,且不受不同时域k因子的影响,其性能优于cnn和CLDNNs等传统结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Method of Measuring Data Fusion Based on EMBET Real Time Noise Power Estimation for Single Carrier Frequency Domain Equalization The CPDA Detector for the MIMO OCDM System A Cooperative Search Algorithm Based on Improved Particle Swarm Optimization Decision for UAV Swarm A Network Topology Awareness Based Probabilistic Broadcast Protocol for Data Transmission in Mobile Ad Hoc Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1