Scene segmentation using temporal clustering for accessing and re-using broadcast video

L. Baraldi, C. Grana, R. Cucchiara
{"title":"Scene segmentation using temporal clustering for accessing and re-using broadcast video","authors":"L. Baraldi, C. Grana, R. Cucchiara","doi":"10.1109/ICME.2015.7177476","DOIUrl":null,"url":null,"abstract":"Scene detection is a fundamental tool for allowing effective video browsing and re-using. In this paper we present a model that automatically divides videos into coherent scenes, which is based on a novel combination of local image descriptors and temporal clustering techniques. Experiments are performed to demonstrate the effectiveness of our approach, by comparing our algorithm against two recent proposals for automatic scene segmentation. We also propose improved performance measures that aim to reduce the gap between numerical evaluation and expected results.","PeriodicalId":146271,"journal":{"name":"2015 IEEE International Conference on Multimedia and Expo (ICME)","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Multimedia and Expo (ICME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2015.7177476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Scene detection is a fundamental tool for allowing effective video browsing and re-using. In this paper we present a model that automatically divides videos into coherent scenes, which is based on a novel combination of local image descriptors and temporal clustering techniques. Experiments are performed to demonstrate the effectiveness of our approach, by comparing our algorithm against two recent proposals for automatic scene segmentation. We also propose improved performance measures that aim to reduce the gap between numerical evaluation and expected results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于时间聚类的广播视频访问和复用场景分割
场景检测是一个基本的工具,允许有效的视频浏览和重用。在本文中,我们提出了一种基于局部图像描述符和时间聚类技术的新组合的模型,该模型将视频自动划分为连贯的场景。通过将我们的算法与最近提出的两种自动场景分割算法进行比较,实验证明了我们的方法的有效性。我们还提出了改进的绩效指标,旨在减少数值评估与预期结果之间的差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Affect-expressive hand gestures synthesis and animation VTouch: Vision-enhanced interaction for large touch displays Egocentric hand pose estimation and distance recovery in a single RGB image A hybrid approach for retrieving diverse social images of landmarks Spatial perception reproduction of sound events based on sound property coincidences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1