ZytleBot: FPGA Integrated Development Platform for ROS Based Autonomous Mobile Robot

Yasuhiro Nitta, Sou Tamura, Hidetoshi Yugen, Hideki Takase
{"title":"ZytleBot: FPGA Integrated Development Platform for ROS Based Autonomous Mobile Robot","authors":"Yasuhiro Nitta, Sou Tamura, Hidetoshi Yugen, Hideki Takase","doi":"10.1109/ICFPT47387.2019.00089","DOIUrl":null,"url":null,"abstract":"The FPT2019 FPGA Design Competition is a competition aimed at recommending innovations in utilizing FPGAs to realize level 5 autonomous driving vehicles. We have developed \"ZytleBot\", an ROS based robot utilizing FPGA for the contest. ZytleBot calculates all processing necessary for autonomous driving in realtime within a programmable SoC. Therefore, it is possible to go around the course imitating an actual road, detect signals and obstacles and take appropriate behavior without any external operation. Robot development requires a wide range of knowledge and technology, but we have proceeded robot development efficiently by using ROS, a robot development middleware, and TurtleBot3, a robot development platform. As an application of FPGA, road surface image preprocessing and traffic signal detector using machine learning is implemented in the FPGA. The traffic signal detector uses HOG features and SVM classifiers, which runs over 270 times faster than running on the processor. We also provide ZytleBot as a platform for efficient development of FPGA integrated ROS robots.","PeriodicalId":241340,"journal":{"name":"2019 International Conference on Field-Programmable Technology (ICFPT)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Field-Programmable Technology (ICFPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICFPT47387.2019.00089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The FPT2019 FPGA Design Competition is a competition aimed at recommending innovations in utilizing FPGAs to realize level 5 autonomous driving vehicles. We have developed "ZytleBot", an ROS based robot utilizing FPGA for the contest. ZytleBot calculates all processing necessary for autonomous driving in realtime within a programmable SoC. Therefore, it is possible to go around the course imitating an actual road, detect signals and obstacles and take appropriate behavior without any external operation. Robot development requires a wide range of knowledge and technology, but we have proceeded robot development efficiently by using ROS, a robot development middleware, and TurtleBot3, a robot development platform. As an application of FPGA, road surface image preprocessing and traffic signal detector using machine learning is implemented in the FPGA. The traffic signal detector uses HOG features and SVM classifiers, which runs over 270 times faster than running on the processor. We also provide ZytleBot as a platform for efficient development of FPGA integrated ROS robots.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ZytleBot:基于ROS的自主移动机器人FPGA集成开发平台
FPT2019 FPGA设计竞赛旨在推荐利用FPGA实现5级自动驾驶汽车的创新产品。为此,我们开发了基于ROS的FPGA机器人“ZytleBot”。ZytleBot在可编程SoC内实时计算自动驾驶所需的所有处理。因此,无需任何外部操作,就可以模拟实际道路在赛道上行驶,检测信号和障碍物,并采取适当的行为。机器人开发需要广泛的知识和技术,但我们已经通过使用机器人开发中间件ROS和机器人开发平台TurtleBot3高效地进行了机器人开发。作为FPGA的一种应用,在FPGA中实现了基于机器学习的路面图像预处理和交通信号检测。交通信号检测器使用HOG特征和SVM分类器,比在处理器上运行快270倍以上。我们还为ZytleBot提供了一个高效开发FPGA集成ROS机器人的平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
RNA: Reconfigurable LSTM Accelerator with Near Data Approximate Processing Time-SWAD: A Dataflow Engine for Time-Based Single Window Stream Aggregation Design and Development of Networked Multiple FPGA Components for Autonomous Tiny Robot Car ZFP-V: Hardware-Optimized Lossy Floating Point Compression Evolved Binary Neural Networks Through Harnessing FPGA Capabilities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1